Lifelong language learning aims to stream learning NLP tasks while retaining knowledge of previous tasks. Previous works based on the language model and following data-free constraint approaches have explored formatting all data as "begin token (\textit{B}) + context (\textit{C}) + question (\textit{Q}) + answer (\textit{A})" for different tasks. However, they still suffer from catastrophic forgetting and are exacerbated when the previous task's pseudo data is insufficient for the following reasons: (1) The model has difficulty generating task-corresponding pseudo data, and (2) \textit{A} is prone to error when \textit{A} and \textit{C} are separated by \textit{Q} because the information of the \textit{C} is diminished before generating \textit{A}. Therefore, we propose the Ask Question First and Replay Question (AQF-RQ), including a novel data format "\textit{BQCA}" and a new training task to train pseudo questions of previous tasks. Experimental results demonstrate that AQF-RQ makes it easier for the model to generate more pseudo data that match corresponding tasks, and is more robust to both sufficient and insufficient pseudo-data when the task boundary is both clear and unclear. AQF-RQ can achieve only 0.36\% lower performance than multi-task learning.
翻译:终身语言学习的目的是在保留对先前任务的知识的同时,流传学习 NLP 任务。 基于语言模型和以下数据约束方法的先前工作已经探索了所有数据的格式, 将所有数据格式化为“ beginmaint(\ textit{B})+上下文(\ textit{C})+问题(\ textit{C})+回答(\ textit{A})+问题(\ textit{A})+回答(\ textit{A})”, 但是, 它们仍然遭受灾难性的遗忘, 当上一个任务的伪数据因以下原因不够充分时, 它们会因以下原因被加重 :(1) 该模型难以生成任务- correspending 伪数据, 和 (2)\ textitle{A} 和\ textitle{ Q} 被\ textextitleitle{C} 分隔为错误格式。 因此, 我们提议“ 问题一号” 和“ 重放问题” 问题 (AQ- R Q), 新的数据格式“\ ” 和“ rodealitaltial latial ” 这样的数据格式, 当前一个训练模拟任务既能更清晰的模拟, 和“A- disal 和“ commin dalal dal” 既能产生更明确的任务” 和“autal” 和“audental” Q” 的模拟”, 当它能更清晰” 和“abildal 和“ 和“x” 时, 当使 AQ” 和“abildal dal 任务” 之后, 当它能够实现更清晰” 和“ 和“x” 的“ 的“ 的” 的” 的” 的“x” 和“x” 和“x” 和“x” 的” 和“abolalal” 的” 和“x” 的” 和“autalalalal” 的“adal” 。