Session-based recommendation tries to make use of anonymous session data to deliver high-quality recommendation under the condition that user-profiles and the complete historical behavioral data of a target user are unavailable. Previous works consider each session individually and try to capture user interests within a session. Despite their encouraging results, these models can only perceive intra-session items and cannot draw upon the massive historical relational information. To solve this problem, we propose a novel method named G$^3$SR (Global Graph Guided Session-based Recommendation). G$^3$SR decomposes the session-based recommendation workflow into two steps. First, a global graph is built upon all session data, from which the global item representations are learned in an unsupervised manner. Then, these representations are refined on session graphs under the graph networks, and a readout function is used to generate session representations for each session. Extensive experiments on two real-world benchmark datasets show remarkable and consistent improvements of the G$^3$SR method over the state-of-the-art methods, especially for cold items.
翻译:以会议为基础的建议试图利用匿名会议数据来提供高质量的建议,条件是没有用户概况和目标用户完整的历史行为数据。以前的工作是逐个审议每次会议,并试图在届会内捕捉用户利益。尽管结果令人鼓舞,但这些模型只能看会期内的项目,不能利用大量的历史关系信息。为解决这一问题,我们提议了一个名为G$3$SR(全球图表指导会议建议)的新方法。G$3$SR将届会建议工作流程分化为两个步骤。首先,以所有届会数据为基础,从中以非监督的方式学习全球项目说明。然后,这些说明在图表网络下对届会图表加以完善,并使用读出功能为每届会议生成届会说明。对两个真实世界基准数据集进行的广泛试验显示,G$3$SR方法在最新方法方面,特别是在冷藏项目方面,取得了显著和一致的改进。