Session-based recommendation tries to make use of anonymous session data to deliver high-quality recommendation under the condition that user-profiles and the complete historical behavioral data of a target user are unavailable. Previous works consider each session individually and try to capture user interests within a session. Despite their encouraging results, these models can only perceive intra-session items and cannot draw upon the massive historical relational information. To solve this problem, we propose a novel method named G$^3$SR (Global Graph Guided Session-based Recommendation). G$^3$SR decomposes the session-based recommendation workflow into two steps. First, a global graph is built upon all session data, from which the global item representations are learned in an unsupervised manner. Then, these representations are refined on session graphs under the graph networks, and a readout function is used to generate session representations for each session. Extensive experiments on two real-world benchmark datasets show remarkable and consistent improvements of the G$^3$SR method over the state-of-the-art methods, especially for cold items.


翻译:以会议为基础的建议试图利用匿名会议数据来提供高质量的建议,条件是没有用户概况和目标用户完整的历史行为数据。以前的工作是逐个审议每次会议,并试图在届会内捕捉用户利益。尽管结果令人鼓舞,但这些模型只能看会期内的项目,不能利用大量的历史关系信息。为解决这一问题,我们提议了一个名为G$3$SR(全球图表指导会议建议)的新方法。G$3$SR将届会建议工作流程分化为两个步骤。首先,以所有届会数据为基础,从中以非监督的方式学习全球项目说明。然后,这些说明在图表网络下对届会图表加以完善,并使用读出功能为每届会议生成届会说明。对两个真实世界基准数据集进行的广泛试验显示,G$3$SR方法在最新方法方面,特别是在冷藏项目方面,取得了显著和一致的改进。

0
下载
关闭预览

相关内容

图像超分辨率(SR)是提高图像分辨率的一类重要的图像处理技术以及计算机视觉中的视频。
【KDD2020-Tutorial】自动推荐系统,Automated Recommendation System
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
WSDM2022推荐系统论文集锦
机器学习与推荐算法
1+阅读 · 2022年1月19日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
推荐中的序列化建模:Session-based neural recommendation
机器学习研究会
18+阅读 · 2017年11月5日
国家自然科学基金
5+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Cold-start Sequential Recommendation via Meta Learner
Arxiv
15+阅读 · 2020年12月10日
Arxiv
20+阅读 · 2019年11月23日
VIP会员
相关VIP内容
【KDD2020-Tutorial】自动推荐系统,Automated Recommendation System
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
WSDM2022推荐系统论文集锦
机器学习与推荐算法
1+阅读 · 2022年1月19日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
推荐中的序列化建模:Session-based neural recommendation
机器学习研究会
18+阅读 · 2017年11月5日
相关基金
国家自然科学基金
5+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员