We propose a new deterministic Kaczmarz algorithm for solving consistent linear systems $A\x=\b$. Basically, the algorithm replaces orthogonal projections with reflections in the original scheme of Stefan Kaczmarz. Building on this, we give a geometric description of solutions of linear systems. Suppose $A$ is $m\times n$, we show that the algorithm generates a series of points distributed with patterns on an $(n-1)$-sphere centered on a solution. These points lie evenly on $2m$ lower-dimensional spheres $\{\S_{k0},\S_{k1}\}_{k=1}^m$, with the property that for any $k$, the midpoint of the centers of $\S_{k0},\S_{k1}$ is exactly a solution of $A\x=\b$. With this discovery, we prove that taking the average of $O(\eta(A)\log(1/\varepsilon))$ points on any $\S_{k0}\cup\S_{k1}$ effectively approximates a solution up to relative error $\varepsilon$, where $\eta(A)$ characterizes the eigengap of the orthogonal matrix produced by the product of $m$ reflections generated by the rows of $A$. We also analyze the connection between $\eta(A)$ and $\kappa(A)$, the condition number of $A$. In the worst case $\eta(A)=O(\kappa^2(A)\log m)$, while for random matrices $\eta(A)=O(\kappa(A))$ on average. Finally, we prove that the algorithm indeed solves the linear system $A^{\TT}W^{-1}A \x = A^{\TT}W^{-1} \b$, where $W$ is the lower-triangular matrix such that $W+W^{\TT}=2AA^{\TT}$. The connection between this linear system and the original one is studied. The numerical tests indicate that this new Kaczmarz algorithm has comparable performance to randomized (block) Kaczmarz algorithms.


翻译:我们提出一个新的确定式Kaczmarz算法,用于解决一致线性系统($A\x美元)。基本上,算法用Stefan Kaczmarz原方案中的反射取代正方位预测。在此基础上,我们给出线性系统解决方案的几何描述。假设美元是美元,我们显示算法产生一系列点,以美元(n-1)美元为主,以一个解决方案为主。这些点平均位于($)下方域$($SQQQ),(Sk1)k1美元=1美元,以任何美元为正方位,以美元为正方位。Ak1美元为中点,以美元为中点,以美元为单位,以美元为单位,以美元为单位,以美元为单位,以美元为单位,以美元为单位,以美元为单位,以美元为单位,以美元为单位,以美元为单位,以美元为单位,以美元为单位,以美元为单位,以美元为单位,以美元为单位,以美元为单位,以美元为单位,以美元为单位,以美元,以美元为单位,以美元为单位,以美元为单位,以美元,以美元为单位,以美元为单位,以美元,以美元为单位,以美元,以美元,以美元为单位,以美元,以美元为美元,以美元,以美元,以美元,以美元,以美元,以美元,以美元,以美元,以美元,以美元,以美元,以美元,以美元,以美元,以美元,以美元,以美元为单位,以美元,以美元,以美元,以美元,以美元,以美元,以美元,以美元,以美元,以美元,以美元,以美元,以美元,以美元,以美元,以美元,以美元,以美元,以美元,以美元,以美元,以美元,以美元,以美元,以美元,以美元,以美元,以美元,以美元,以美元,以美元,以美元,以美元,以美元,以美元,以美元,以美元,以美元,以美元,以美元,以美元,以美元,以美元,以美元,以美元,以美元,以美元,以美元,以美元,以美元,以美元,以美元

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
专知会员服务
159+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年12月13日
Arxiv
0+阅读 · 2022年12月12日
Arxiv
0+阅读 · 2022年12月9日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
专知会员服务
159+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员