We provide a unifying framework for the design and analysis of multi-calibrated and moment-multi-calibrated predictors. Placing the multi-calibration problem in the general setting of \emph{multi-objective learning} -- where learning guarantees must hold simultaneously over a set of distributions and loss functions -- we exploit connections to game dynamics to obtain state-of-the-art guarantees for a diverse set of multi-calibration learning problems. In addition to shedding light on existing multi-calibration guarantees, and greatly simplifying their analysis, our approach yields a $1/\epsilon^2$ improvement in the number of oracle calls compared to the state-of-the-art algorithm of Jung et al. 2021 for learning deterministic moment-calibrated predictors and an exponential improvement in $k$ compared to the state-of-the-art algorithm of Gopalan et al. 2022 for learning a $k$-class multi-calibrated predictor. Beyond multi-calibration, we use these game dynamics to address existing and emerging considerations in the study of group fairness and multi-distribution learning.
翻译:我们为设计和分析多校准和片刻多校准的预测器提供了一个统一框架。在\ emph{ 多重目标学习}总设置中设置多校准问题 -- -- 学习保障必须同时维持在一系列分布和损失功能上 -- -- 我们利用与游戏动态的连接,为多种多校准学习问题获得最先进的保障。除了对现有的多校准保证进行透视,并大大简化其分析外,我们的方法还使得与正等人2021年最先进的算法相比,多校准调试器的数量增加了1美元/ epsilon%2美元,用于学习确定性瞬间校准预测器,并与Gopalan等人2022年最先进的算法相比,用于学习1千元的多校准预测器的指数性改进。除了多校准外,我们利用这些游戏动力在群体公平和多校准研究中解决现有和新出现的考虑因素。