Precise monitoring of respiratory rate in premature infants is essential to initiate medical interventions as required. Wired technologies can be invasive and obtrusive to the patients. We propose a Deep Learning enabled wearable monitoring system for premature newborn infants, where respiratory cessation is predicted using signals that are collected wirelessly from a non-invasive wearable Bellypatch put on infant's body. We propose a five-stage design pipeline involving data collection and labeling, feature scaling, model selection with hyperparameter tuning, model training and validation, model testing and deployment. The model used is a 1-D Convolutional Neural Network (1DCNN) architecture with 1 convolutional layer, 1 pooling layer and 3 fully-connected layers, achieving 97.15% accuracy. To address energy limitations of wearable processing, several quantization techniques are explored and their performance and energy consumption are analyzed. We propose a novel Spiking-Neural-Network(SNN) based respiratory classification solution, which can be implemented on event-driven neuromorphic hardware. We propose an approach to convert the analog operations of our baseline 1DCNN to their spiking equivalent. We perform a design-space exploration using the parameters of the converted SNN to generate inference solutions having different accuracy and energy footprints. We select a solution that achieves 93.33% accuracy with 18 times lower energy compared with baseline 1DCNN model. Additionally the proposed SNN solution achieves similar accuracy but with 4 times less energy.
翻译:对早产婴儿呼吸率进行精确监测是启动必要的医疗干预措施的必要条件。有线技术可以是侵入性的,对病人具有侵扰性。我们提议为早产婴儿建立一个深学习可磨损监测系统,该系统使用从婴儿身体上无线收集的非侵入性穿损Bellepatch信号,预测呼吸停止。我们提议了一个五阶段设计管道,包括数据收集和标签、特征缩放、采用超参数调、模型培训和验证、示范测试和部署的模型选择。所使用的模型是1D 进化神经网络(1DCNNN)结构,有1个革命层、1个集合层和3个完全连接的层,达到97.15%的精确度。为了解决耗损处理的能源限制,我们探索了几种四分级技术,分析其性能和能源消耗情况。我们提议了一个全新的Spiking-Neural-Network(SNNN)基于呼吸分类的模型,该模型可以在事件驱动的神经形态硬件上实施。我们提议了一种方法,将我们的基线1DCNNNNN(NNNN)的模拟操作参数转换为相当于S-18级的精确度解决方案。我们用S-NNNCS的精确度来进行一个不同的设计,在18度上实现一个不同的能源定位的精确度的精确度,在18次的精确度的精确度,在18度上实现一个精确度上实现。