We tackle the problem of establishing the soundness of approximate bisimilarity with respect to PCTL and its relaxed semantics. To this purpose, we consider a notion of bisimilarity inspired by the one introduced by Desharnais, Laviolette, and Tracol, and parametric with respect to an approximation error $\delta$, and to the depth $n$ of the observation along traces. Essentially, our soundness theorem establishes that, when a state $q$ satisfies a given formula up-to error $\delta$ and steps $n$, and $q$ is bisimilar to $q'$ up-to error $\delta'$ and enough steps, we prove that $q'$ also satisfies the formula up-to a suitable error $\delta"$ and steps $n$. The new error $\delta"$ is computed from $\delta$, $\delta'$ and the formula, and only depends linearly on $n$. We provide a detailed overview of our soundness proof. We extend our bisimilarity notion to families of states, thus obtaining an asymptotic equivalence on such families. We then consider an asymptotic satisfaction relation for PCTL formulae, and prove that asymptotically equivalent families of states asymptotically satisfy the same formulae.


翻译:我们解决了关于在PCTL和其松弛语义下,近似双模拟的合理性问题。为此,我们考虑了一个由Desharnais、Laviolette和Tracol引入的双模拟概念,该概念与近似误差$\delta$和沿着轨迹的观察深度$n$有关。实质上,我们的合理性定理建立了一个状态$q$相对于公式在误差$\delta$和步数$n$的限制下的满足性,当$q$与$q'$近似模拟到误差$\delta'$和足够的步数时,通过计算新误差$\delta"$来证明$q'$相对于适当的步数$n$也满足公式。新误差$\delta"$是由$\delta$、$\delta'$和公式计算出来的,只与$n$线性相关。我们提供了对我们合理性证明的详细概述。我们将我们的双模拟概念扩展到状态族,从而在这些族上获得了一个渐近等价关系。然后,我们考虑PCTL公式的渐近满意关系,并证明相互渐近等价的状态族渐近满足相同的公式。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
【硬核书】矩阵代数基础,248页pdf
专知会员服务
85+阅读 · 2021年12月9日
专知会员服务
50+阅读 · 2020年12月14日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
深度卷积神经网络中的降采样
极市平台
12+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月19日
Arxiv
0+阅读 · 2023年5月19日
Arxiv
0+阅读 · 2023年5月17日
VIP会员
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员