We tackle the problem of establishing the soundness of approximate bisimilarity with respect to PCTL and its relaxed semantics. To this purpose, we consider a notion of bisimilarity inspired by the one introduced by Desharnais, Laviolette, and Tracol, and parametric with respect to an approximation error $\delta$, and to the depth $n$ of the observation along traces. Essentially, our soundness theorem establishes that, when a state $q$ satisfies a given formula up-to error $\delta$ and steps $n$, and $q$ is bisimilar to $q'$ up-to error $\delta'$ and enough steps, we prove that $q'$ also satisfies the formula up-to a suitable error $\delta"$ and steps $n$. The new error $\delta"$ is computed from $\delta$, $\delta'$ and the formula, and only depends linearly on $n$. We provide a detailed overview of our soundness proof. We extend our bisimilarity notion to families of states, thus obtaining an asymptotic equivalence on such families. We then consider an asymptotic satisfaction relation for PCTL formulae, and prove that asymptotically equivalent families of states asymptotically satisfy the same formulae.
翻译:我们解决了关于在PCTL和其松弛语义下,近似双模拟的合理性问题。为此,我们考虑了一个由Desharnais、Laviolette和Tracol引入的双模拟概念,该概念与近似误差$\delta$和沿着轨迹的观察深度$n$有关。实质上,我们的合理性定理建立了一个状态$q$相对于公式在误差$\delta$和步数$n$的限制下的满足性,当$q$与$q'$近似模拟到误差$\delta'$和足够的步数时,通过计算新误差$\delta"$来证明$q'$相对于适当的步数$n$也满足公式。新误差$\delta"$是由$\delta$、$\delta'$和公式计算出来的,只与$n$线性相关。我们提供了对我们合理性证明的详细概述。我们将我们的双模拟概念扩展到状态族,从而在这些族上获得了一个渐近等价关系。然后,我们考虑PCTL公式的渐近满意关系,并证明相互渐近等价的状态族渐近满足相同的公式。