This paper presents a hybrid morphological neural network for regression tasks called linear dilation-erosion regression ($\ell$-DER). In few words, an $\ell$-DER model is given by a convex combination of the composition of linear and elementary morphological operators. As a result, they yield continuous piecewise linear functions and, thus, are universal approximators. Apart from introducing the $\ell$-DER models, we present three approaches for training these models: one based on stochastic descent gradient and two based on the difference of convex programming problems. Finally, we evaluate the performance of the $\ell$-DER model using 14 regression tasks. Although the approach based on SDG revealed faster than the other two, the $\ell$-DER trained using a disciplined convex-concave programming problem outperformed the others in terms of the least mean absolute error score.
翻译:本文介绍了一种混合形态神经网络,用于称为线性膨胀-腐蚀回归的回归任务($\ ell$-DER) 。 简略地说, 线性和初级形态操作者构成的组合给出了 $\ ell$-DER 模型, 结果是它们产生连续的片断线函数, 因而是普遍的近似体。 除了引入 $\ ell$- DER 模型外, 我们提出了三种培训这些模型的方法: 一种基于随机的血缘梯度, 另一种基于康韦克斯编程问题的差异。 最后, 我们用14个回归任务来评估 $\ ell$- DER 模型的性能。 虽然基于SDG 的方法比其他两种任务显示得更快, 但是, 以有纪律的 convex- concave 编程问题训练的 $\ ell$- DER 在最小的绝对误差分数方面比其他模型高得多。