This paper presents a hybrid morphological neural network for regression tasks called linear dilation-erosion regression ($\ell$-DER). In few words, an $\ell$-DER model is given by a convex combination of the composition of linear and elementary morphological operators. As a result, they yield continuous piecewise linear functions and, thus, are universal approximators. Apart from introducing the $\ell$-DER models, we present three approaches for training these models: one based on stochastic descent gradient and two based on the difference of convex programming problems. Finally, we evaluate the performance of the $\ell$-DER model using 14 regression tasks. Although the approach based on SDG revealed faster than the other two, the $\ell$-DER trained using a disciplined convex-concave programming problem outperformed the others in terms of the least mean absolute error score.


翻译:本文介绍了一种混合形态神经网络,用于称为线性膨胀-腐蚀回归的回归任务($\ ell$-DER) 。 简略地说, 线性和初级形态操作者构成的组合给出了 $\ ell$-DER 模型, 结果是它们产生连续的片断线函数, 因而是普遍的近似体。 除了引入 $\ ell$- DER 模型外, 我们提出了三种培训这些模型的方法: 一种基于随机的血缘梯度, 另一种基于康韦克斯编程问题的差异。 最后, 我们用14个回归任务来评估 $\ ell$- DER 模型的性能。 虽然基于SDG 的方法比其他两种任务显示得更快, 但是, 以有纪律的 convex- concave 编程问题训练的 $\ ell$- DER 在最小的绝对误差分数方面比其他模型高得多。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2021年5月19日
专知会员服务
41+阅读 · 2021年4月2日
专知会员服务
76+阅读 · 2021年3月16日
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
目标检测中的Consistent Optimization
极市平台
6+阅读 · 2019年4月23日
一文读懂目标检测:R-CNN、Fast R-CNN、Faster R-CNN、YOLO、SSD
七月在线实验室
11+阅读 · 2018年7月18日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年9月13日
Arxiv
0+阅读 · 2021年9月9日
Arxiv
3+阅读 · 2018年11月11日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2021年5月19日
专知会员服务
41+阅读 · 2021年4月2日
专知会员服务
76+阅读 · 2021年3月16日
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
目标检测中的Consistent Optimization
极市平台
6+阅读 · 2019年4月23日
一文读懂目标检测:R-CNN、Fast R-CNN、Faster R-CNN、YOLO、SSD
七月在线实验室
11+阅读 · 2018年7月18日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员