Artificial intelligence is creating one of the biggest revolution across technology driven application fields. For the finance sector, it offers many opportunities for significant market innovation and yet broad adoption of AI systems heavily relies on our trust in their outputs. Trust in technology is enabled by understanding the rationale behind the predictions made. To this end, the concept of eXplainable AI emerged introducing a suite of techniques attempting to explain to users how complex models arrived at a certain decision. For cross-sectional data classical XAI approaches can lead to valuable insights about the models' inner workings, but these techniques generally cannot cope well with longitudinal data (time series) in the presence of dependence structure and non-stationarity. We here propose a novel XAI technique for deep learning methods which preserves and exploits the natural time ordering of the data.
翻译:人工智能正在创造出技术驱动的应用领域最大的革命之一。 对于金融部门来说,它提供了大量市场创新的许多机会,但广泛采用人工智能系统在很大程度上依赖于我们对其产出的信任。对技术的信任是通过理解预测背后的理由而得以实现的。为此,可移植的人工智能概念引入了一系列技术,试图向用户解释复杂模型是如何达成某种决定的。对于跨部门数据,典型的XAI方法可以导致对模型内部运作的宝贵洞察力,但是这些技术一般无法在依赖性结构和不静止的情况下很好地应对纵向数据(时间序列 ) 。 我们在此提出一种新的 XAI 方法, 用于深度学习, 保存和利用数据的自然时间顺序 。