Deep learning (DL) has emerged as a promising tool to downscale climate projections at regional-to-local scales from large-scale atmospheric fields following the perfect-prognosis (PP) approach. Given their complexity, it is crucial to properly evaluate these methods, especially when applied to changing climatic conditions where the ability to extrapolate/generalise is key. In this work, we intercompare several DL models extracted from the literature for the same challenging use-case (downscaling temperature in the CORDEX North America domain) and expand standard evaluation methods building on eXplainable artifical intelligence (XAI) techniques. We show how these techniques can be used to unravel the internal behaviour of these models, providing new evaluation dimensions and aiding in their diagnostic and design. These results show the usefulness of incorporating XAI techniques into statistical downscaling evaluation frameworks, especially when working with large regions and/or under climate change conditions.
翻译:深层学习(DL)已成为一种很有希望的工具,在采用完美预测(PP)方法后,从区域到地方范围从大规模大气领域缩小气候预测。鉴于这些方法的复杂性,必须适当评价这些方法,特别是当这些方法应用于不断变化的气候条件时,因为推断/概括能力是关键因素。在这项工作中,我们从文献中提取了数个DL模型,用于具有挑战性的同一使用情况(CORDEX北美域的降温),并扩大了基于可显性人工智能(XAI)技术的标准评估方法。我们展示了这些技术如何能够用来解析这些模型的内部行为,提供新的评价层面,并协助其诊断和设计。这些结果表明,将XAI技术纳入统计降尺度评价框架是有用的,特别是在与大区域和/或气候变化条件下合作时。