Biomolecular electrostatics is key in protein function and the chemical processes affecting it.Implicit-solvent models expressed by the Poisson-Boltzmann (PB) equation can provide insights with less computational power than full atomistic models, making large-system studies -- at the scale of viruses, for example -- accessible to more researchers. This paper presents a high-productivity and high-performance computational workflow combining Exafmm, a fast multipole method (FMM) library, and Bempp, a Galerkin boundary element method (BEM) package. It integrates an easy-to-use Python interface with well-optimized computational kernels that are written in compiled languages. Researchers can run PB simulations interactively via Jupyter notebooks, enabling faster prototyping and analyzing. We provide results that showcase the capability of the software, confirm correctness, and evaluate its performance with problem sizes between 8,000 and 2 million boundary elements. A study comparing two variants of the boundary integral formulation in regards to algebraic conditioning showcases the power of this interactive computing platform to give useful answers with just a few lines of code. As a form of solution verification, mesh refinement studies with a spherical geometry as well as with a real biological structure (5PTI) confirm convergence at the expected $1/N$ rate, for $N$ boundary elements. Performance results include timings, breakdowns, and computational complexity. Exafmm offers evaluation speeds of just a few seconds for tens of millions of points, and $\mathcal{O}(N)$ scaling. This allowed computing the solvation free energy of a Zika virus, represented by 1.6 million atoms and 10 million boundary elements, at 80-min runtime on a single compute node (dual 20-core Intel Xeon Gold 6148). All results in the paper are presented with utmost care for reproducibility.


翻译:生物分子电流是蛋白质功能和影响它的化学过程的关键。 Poisson- Boltzmann (PB) 等方程式所展示的“ 溶解” 模型可以提供比完整原子模型更低的计算能力洞察力, 使大型系统研究 -- -- 例如病毒规模的研究 -- -- 可供更多的研究人员使用。 本文展示了一个高生产率和高性能的计算工作流程, 包括Exafmm( 快速多极方法( FMM) 库) 和 Bempp( 一个 Galerkin 边界要素( BEM) 软件包 。 它将一个简单到用Nython( Python) 方程式界面的简单解析解析。 研究人员可以通过 Jupypyter 笔记( 快速解析) 进行PBBM模拟, 我们提供的结果展示软件的能力, 证实正确性, 评估其问题大小在8,000万到200万个边界元素之间。 一项研究比较边界组合的两种变量, 用来在数值- 平价值内展示这个精确的解算值的解算结果。

0
下载
关闭预览

相关内容

IFIP TC13 Conference on Human-Computer Interaction是人机交互领域的研究者和实践者展示其工作的重要平台。多年来,这些会议吸引了来自几个国家和文化的研究人员。官网链接:http://interact2019.org/
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
247+阅读 · 2020年4月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
153+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
lightgbm algorithm case of kaggle(上)
R语言中文社区
8+阅读 · 2018年3月20日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年5月13日
VIP会员
相关资讯
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
lightgbm algorithm case of kaggle(上)
R语言中文社区
8+阅读 · 2018年3月20日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员