Censored survival data are common in clinical trial studies. We propose a unified framework for sensitivity analysis to censoring at random in survival data using multiple imputation and martingale, called SMIM. The proposed framework adopts the \delta-adjusted and control-based models, indexed by the sensitivity parameter, entailing censoring at random and a wide collection of censoring not at random assumptions. Also, it targets for a broad class of treatment effect estimands defined as functionals of treatment-specific survival functions, taking into account of missing data due to censoring. Multiple imputation facilitates the use of simple full-sample estimation; however, the standard Rubin's combining rule may overestimate the variance for inference in the sensitivity analysis framework. We decompose the multiple imputation estimator into a martingale series based on the sequential construction of the estimator and propose the wild bootstrap inference by resampling the martingale series. The new bootstrap inference has a theoretical guarantee for consistency and is computationally efficient compared to the non-parametric bootstrap counterpart. We evaluate the finite-sample performance of the proposed SMIM through simulation and an application on a HIV clinical trial.
翻译:在临床试验研究中,常有敏感生存数据。我们提出了一个统一的敏感性分析框架,以便利用多重估算和马丁格(SMIM)对生存数据进行随机审查,称为SMIM。拟议框架采用按敏感参数编制索引的\delta调整和控制模型,包括随机和广泛收集非随机假设的检查。此外,它还针对一系列广泛的治疗效果估计值,将之界定为特定治疗生存功能的功能,同时考虑到因审查而缺失的数据。多重估算有助于使用简单的全抽样估计;然而,标准的Rubin综合规则可能高估敏感分析框架中的推断值差异。我们根据测算器的顺序构造,将多重估计估计值转换成一个定数序列,并通过重新标定数序列,提出野生靴陷阱的推断。新的靴带推推为一致性的理论保证,而且与非参数制式靴带相比,计算效率很高;我们通过模拟模拟艾滋病毒临床试验,对定数模型进行业绩评估。