When probabilistic classifiers are trained and calibrated, the so-called grouping loss component of the calibration loss can easily be overlooked. Grouping loss refers to the gap between observable information and information actually exploited in the calibration exercise. We investigate the relation between grouping loss and the concept of sufficiency, identifying comonotonicity as a useful criterion for sufficiency. We revisit the probing reduction approach of Langford & Zadrozny (2005) and find that it produces an estimator of probabilistic classifiers that reduces grouping loss. Finally, we discuss Brier curves as tools to support training and 'sufficient' calibration of probabilistic classifiers.
翻译:当概率分类器经过培训和校准时,很容易忽略校准损失中所谓的分类损失部分。分类损失是指在校准活动中实际利用的可观测信息和信息之间的差距。我们调查分类损失与充足性概念之间的关系,确定共聚性是充足性的有用标准。我们重新审视了Langford & Zadrozny (2005年) 的降低概率方法,发现它产生了减少分类损失的概率分类器的估算器。最后,我们讨论了Brier曲线作为支持培训和概率分类器“充足”校准的工具。