This paper develops a frequentist solution to the functional calibration problem, where the value of a calibration parameter in a computer model is allowed to vary with the value of control variables in the physical system. The need of functional calibration is motivated by engineering applications where using a constant calibration parameter results in a significant mismatch between outputs from the computer model and the physical experiment. Reproducing kernel Hilbert spaces (RKHS) are used to model the optimal calibration function, defined as the functional relationship between the calibration parameter and control variables that gives the best prediction. This optimal calibration function is estimated through penalized least squares with an RKHS-norm penalty and using physical data. An uncertainty quantification procedure is also developed for such estimates. Theoretical guarantees of the proposed method are provided in terms of prediction consistency and consistency of estimating the optimal calibration function. The proposed method is tested using both real and synthetic data and exhibits more robust performance in prediction and uncertainty quantification than the existing parametric functional calibration method and a state-of-art Bayesian method.
翻译:本文为功能校准问题开发了一种常见的解决方案, 计算机模型中校准参数的价值允许随物理系统中控制变量的价值而变化。 功能校准的需要受工程应用的驱动, 使用恒定校准参数导致计算机模型和物理实验输出之间出现重大不匹配。 复制内核希尔伯特空间( 环球空间) 用于模拟最佳校准功能, 定义为校准参数与提供最佳预测的控制变量之间的功能关系 。 最佳校准功能是通过最起码的受罚方和RKHS- 诺姆惩罚并使用物理数据来估计的。 为这种估算还制定了一种不确定性量化程序。 对拟议方法的理论保证是预测最佳校准功能的估计的一致性和一致性。 拟议的方法使用真实和合成数据进行测试,并展示了比现有的参数校准功能校准方法和一种最先进的巴耶斯法在预测和不确定性量化方面的更强的性表现。