The numerical solution of singular generalized eigenvalue problems is still challenging. In Hochstenbach, Mehl, and Plestenjak, Solving Singular Generalized Eigenvalue Problems by a Rank-Completing Perturbation, SIMAX 2019, a rank-completing perturbation was proposed and a related bordering of the singular pencil. For large sparse pencils, we propose an LU factorization that determines a rank completing perturbation that regularizes the pencil and that is then used in the shift-and-invert Arnoldi method to obtain eigenvalues nearest a shift. Numerical examples illustrate the theory and the algorithms.
翻译:暂无翻译