The results of this study are continuation of the research of Poincar\'e chaos initiated in papers (Akhmet M, Fen MO. Commun Nonlinear Sci Numer Simulat 2016;40:1-5; Akhmet M, Fen MO. Turk J Math, doi:10.3906/mat-1603-51, accepted). We focus on the construction of an unpredictable function, continuous on the real axis. As auxiliary results, unpredictable orbits for the symbolic dynamics and the logistic map are obtained. By shaping the unpredictable function as well as Poisson function we have performed the first step in the development of the theory of unpredictable solutions for differential and discrete equations. The results are preliminary ones for deep analysis of chaos existence in differential and hybrid systems. Illustrative examples concerning unpredictable solutions of differential equations are provided.
翻译:这项研究的结果是继续研究论文(Akhmet M, Fen MO. Commun Nonlinear Sci Numer Simulat 2016;40:1-5;Akhmet M, Fen MO. Turk J Math, doi:10.3906/mat-1603-51, 已接受)中启动的Poincar\'e混乱问题研究的结果,我们的重点是在真实轴上不断构建一个不可预见功能,作为辅助结果,获得象征动态和后勤图的不可预测的轨道;通过塑造不可预测的功能和Poisson功能,我们在为差异和离散方程式制定不可预测的解决方案理论方面迈出了第一步;结果是深入分析差异和混合系统存在混乱的初步结果;提供了不同方程式不可预测的解决方案的典型例子。