Adversarial training provides a principled approach for training robust neural networks. From an optimization perspective, adversarial training is essentially solving a bilevel optimization problem. The leader problem is trying to learn a robust classifier, while the follower problem is trying to generate adversarial samples. Unfortunately, such a bilevel problem is difficult to solve due to its highly complicated structure. This work proposes a new adversarial training method based on a generic learning-to-learn (L2L) framework. Specifically, instead of applying existing hand-designed algorithms for the inner problem, we learn an optimizer, which is parametrized as a convolutional neural network. At the same time, a robust classifier is learned to defense the adversarial attack generated by the learned optimizer. Experiments over CIFAR-10 and CIFAR-100 datasets demonstrate that L2L outperforms existing adversarial training methods in both classification accuracy and computational efficiency. Moreover, our L2L framework can be extended to generative adversarial imitation learning and stabilize the training.


翻译:Aversarial 培训为培训强大的神经网络提供了一个原则性方法。 从优化的角度来说,对抗性培训基本上是解决双级优化问题。 领导者问题正在试图学习一个强大的分类器, 而后续者问题正在试图生成对抗性样本。 不幸的是,这种双级问题由于结构非常复杂而难以解决。 这项工作提出了一个新的对抗性培训方法, 其基础是通用的从学到读( L2L) 框架。 具体地说, 我们不是应用现有的人工设计算法解决内部问题, 而是学习一个优化者, 因为它是一个平行的神经网络。 与此同时, 一个强大的分类器正在学习如何保护由学习的优化者引发的对抗性攻击。 对CIFAR- 10 和 CIFAR- 100 数据集的实验表明, L2L 将现有的对抗性培训方法在分类精度和计算效率两方面都比起来。 此外, 我们的L2L框架可以扩展至基因化的对立式模拟模拟学习和稳定培训。

0
下载
关闭预览

相关内容

专知会员服务
30+阅读 · 2021年6月12日
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
专知会员服务
44+阅读 · 2020年10月31日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
163+阅读 · 2020年3月18日
【斯坦福大学】Gradient Surgery for Multi-Task Learning
专知会员服务
46+阅读 · 2020年1月23日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Zero-Shot Learning相关资源大列表
专知
52+阅读 · 2019年1月1日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年6月18日
Arxiv
5+阅读 · 2020年10月22日
Arxiv
5+阅读 · 2020年6月16日
Arxiv
38+阅读 · 2020年3月10日
Deflecting Adversarial Attacks
Arxiv
8+阅读 · 2020年2月18日
Meta-Transfer Learning for Few-Shot Learning
Arxiv
4+阅读 · 2019年4月9日
Arxiv
11+阅读 · 2018年7月8日
VIP会员
相关VIP内容
专知会员服务
30+阅读 · 2021年6月12日
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
专知会员服务
44+阅读 · 2020年10月31日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
163+阅读 · 2020年3月18日
【斯坦福大学】Gradient Surgery for Multi-Task Learning
专知会员服务
46+阅读 · 2020年1月23日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Zero-Shot Learning相关资源大列表
专知
52+阅读 · 2019年1月1日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Arxiv
0+阅读 · 2021年6月18日
Arxiv
5+阅读 · 2020年10月22日
Arxiv
5+阅读 · 2020年6月16日
Arxiv
38+阅读 · 2020年3月10日
Deflecting Adversarial Attacks
Arxiv
8+阅读 · 2020年2月18日
Meta-Transfer Learning for Few-Shot Learning
Arxiv
4+阅读 · 2019年4月9日
Arxiv
11+阅读 · 2018年7月8日
Top
微信扫码咨询专知VIP会员