Brain function and connectivity is a pressing mystery in medicine related to many diseases. Neural connectomes have been studied as graphs with graph theory methods including topological methods. Work has started on hypergraph models and methods where the geometry and topology is significantly different. We define a hypergraph called the hyper-connectome with joint information entropy and total correlation. We give the pseudocode for computation from finite samples. We give the theoretic importance of this generalization's topology and geometry with respect to random variables and then prove the hypergraph can be necessary for prediction and classification. We confirm with a simulation study and computation. We prove the approximation for continuous random variables with finite samples. We compare connectome versus hyper-connectome for predicting schizophrenia in subjects based on a fMRI dataset using a linear support vector machine. The hyper-connectome achieves better performance in accuracy (up to 56\%) and F1 score (up to 0.52) than the connectome. We reject null hypothesis at 95\% with p-value = 0.00074.
翻译:大脑功能和连接是许多疾病医学上的一个紧迫的谜题。 神经连接器已被作为图表理论方法( 包括地形学方法) 的图表来研究。 已经在几何和地形学大不相同的高光谱模型和方法上开始工作。 我们定义了一个称为超链接器的高光谱模型和方法, 使用联合信息酶和总相关性。 我们给出了从有限样本中进行计算的假码。 我们给出了这种一般化的地形学和几何对于随机变量的重要性, 然后证明了高光谱对于预测和分类来说是必要的。 我们通过模拟研究和计算来确认。 我们用有限的样本来证明连续随机变量的近似值。 我们用直线支持矢量机比较了基于FMRI数据集的主体中预测精神分裂症的连接器和超链接器。 超链接器比连接器在精确度( 高达56 ⁇ ) 和F1分( 高达0.52) 方面表现得更好。 我们拒绝在95° 和 p- 值 = 0. 0000074 的无效假设。