Multi-dimensional data exploration is a classic research topic in visualization. Most existing approaches are designed for identifying record patterns in dimensional space or subspace. In this paper, we propose a visual analytics approach to exploring subset patterns. The core of the approach is a subset embedding network (SEN) that represents a group of subsets as uniformly-formatted embeddings. We implement the SEN as multiple subnets with separate loss functions. The design enables to handle arbitrary subsets and capture the similarity of subsets on single features, thus achieving accurate pattern exploration, which in most cases is searching for subsets having similar values on few features. Moreover, each subnet is a fully-connected neural network with one hidden layer. The simple structure brings high training efficiency. We integrate the SEN into a visualization system that achieves a 3-step workflow. Specifically, analysts (1) partition the given dataset into subsets, (2) select portions in a projected latent space created using the SEN, and (3) determine the existence of patterns within selected subsets. Generally, the system combines visualizations, interactions, automatic methods, and quantitative measures to balance the exploration flexibility and operation efficiency, and improve the interpretability and faithfulness of the identified patterns. Case studies and quantitative experiments on multiple open datasets demonstrate the general applicability and effectiveness of our approach.


翻译:多维数据探索是一个典型的可视化研究专题。 多数现有方法都是用来识别维空间或子空间记录模式的典型研究课题。 在本文件中,我们提出了探索子空间或子空间记录模式的视觉分析方法。 方法的核心是一个子嵌入网络( SEN), 代表一组子集, 作为统一格式的嵌入器。 我们把SEN作为多个子网, 具有不同的损失功能。 设计能够处理任意子集, 捕捉单一特征子集的相似性, 从而实现精确的图案探索, 在大多数情况下, 正在寻找几个特征上具有类似值的子集。 此外, 每个子网都是一个隐藏层的完全连接的神经网络。 简单的结构带来高培训效率。 我们将SEN整合到一个直观化系统中, 实现三步式的嵌入。 具体地说, 我们的分析师(1) 将给定数据集分成子网, (2) 在使用 SEN 创建的预测的潜层空间中选择部分, 以及(3) 确定特定子集内是否存在模式。 一般来说, 系统将视觉化、 互动、 自动方法和量化措施结合了子网,, 来平衡我们探索的可视性和操作性、 和量化的多级性 的模型。

0
下载
关闭预览

相关内容

专知会员服务
77+阅读 · 2021年5月30日
专知会员服务
50+阅读 · 2020年12月14日
经济学中的数据科学,Data Science in Economics,附22页pdf
专知会员服务
35+阅读 · 2020年4月1日
ExBert — 可视化分析Transformer学到的表示
专知会员服务
31+阅读 · 2019年10月16日
已删除
将门创投
4+阅读 · 2019年11月8日
revelation of MONet
CreateAMind
5+阅读 · 2019年6月8日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
自然语言处理 (三) 之 word embedding
DeepLearning中文论坛
19+阅读 · 2015年8月3日
Arxiv
4+阅读 · 2020年5月25日
Arxiv
4+阅读 · 2020年3月27日
Arxiv
4+阅读 · 2019年1月14日
VIP会员
相关资讯
已删除
将门创投
4+阅读 · 2019年11月8日
revelation of MONet
CreateAMind
5+阅读 · 2019年6月8日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
自然语言处理 (三) 之 word embedding
DeepLearning中文论坛
19+阅读 · 2015年8月3日
Top
微信扫码咨询专知VIP会员