In practice, multi-task learning (through learning features shared among tasks) is an essential property of deep neural networks (NNs). While infinite-width limits of NNs can provide a good intuition for their generalization behavior, the well-known infinite-width limits of NNs in the literature (e.g., neural tangent kernels) assume specific settings in which wide ReLU-NNs behave like shallow Gaussian Processes with a fixed kernel. Consequently, in such settings, these NNs lose their ability to benefit from multi-task learning in the infinite-width limit. In contrast, we prove that optimizing wide ReLU neural networks with at least one hidden layer using L2-regularization on the parameters enforces multi-task learning due to representation-learning - also in the limiting regime where the network width tends to infinity. We present an exact quantitative characterization of this infinite width limit in an appropriate function space that neatly describes multi-task learning.
翻译:在实践中,多任务学习(通过任务之间共享的学习特征)是深神经网络(NNs)的一个基本属性。 虽然NNs无限宽限能为其一般行为提供良好的直觉,但文献中众所周知的NNs无限宽限(例如,神经相干内核)所假设的具体环境是,大ReLU-NNs的行为方式像浅浅高斯进程,并有一个固定内核。因此,在这种环境中,这些NNs丧失了在无限宽限内从多任务学习中受益的能力。相反,我们证明,利用参数上的L2常规化,使至少一个隐藏层的RELU神经网络优化,可以执行与代表性学习有关的多任务学习,这也是在网络宽度趋向无限的有限制度中。我们提出了在适当功能空间中这一无限宽限的确切定量定性,可以准确描述多任务学习。