Although weakly-supervised semantic segmentation using only image-level labels (WSSS-IL) is potentially useful, its low performance and implementation complexity still limit its application. The main causes are (a) non-detection and (b) false-detection phenomena: (a) The class activation maps refined from existing WSSS-IL methods still only represent partial regions for large-scale objects, and (b) for small-scale objects, over-activation causes them to deviate from the object edges. We propose RecurSeed which alternately reduces non- and false detections through recursive iterations, thereby implicitly finding an optimal junction that minimizes both errors. We also propose a novel data augmentation (DA) approach called EdgePredictMix, which further expresses an object's edge by utilizing the probability difference information between adjacent pixels in combining the segmentation results, thereby compensating for the shortcomings when applying the existing DA methods to WSSS. We achieved state-of-the-art performances on the PASCAL VOC 2012 and MS COCO 2014 benchmarks (VOC val 74.4%, COCO val 46.4%). The code is available at https://github.com/OFRIN/RecurSeed_and_EdgePredictMix.
翻译:虽然仅使用图像级标签(WSSSS-IL)而监管不力的语义分解法可能有用,但其性能和执行复杂性较低,仍然限制了其应用,主要原因是:(a) 未检测和(b) 虚假检测现象:(a) 从现有的WSS-IL方法中精细完善的类动地图仅代表大型天体部分区域,和(b) 对于小型天体而言,超活化导致它们偏离天体边缘。我们提议RecurSead,通过循环迭代法,替代地减少非检测和虚假检测,从而隐含地找到一个最佳的连接点,最大限度地减少这两个错误。我们还提议采用名为 EdgePredictMix(DA) 的新的数据增强(DA) 方法,该方法利用相邻像体之间的概率差异信息,进一步表达物体的优势,从而弥补在将现有DASSS应用现有方法时的缺陷。我们实现了2012年PASAL VOC和2014 MS CO4的状态-REV/Recom CO 标准(OC/OVAVES_RV/RVE4/%)。