In Large Language Models (LLMs), there have been consistent advancements in task-specific performance, largely influenced by effective prompt design. While recent research on prompting has enhanced the reasoning capabilities of LLMs, a gap remains in further improving their understanding abilities. In this study, we introduce metacognitive prompting (MP), a strategy inspired by human introspective reasoning processes. Using MP, LLMs undergo a systematic series of structured, self-aware evaluations, drawing on both their vast inherent knowledge and new insights. Our experiments involve five prevalent LLMs: Llama2, Vicuna, PaLM, GPT-3.5, and GPT-4, all of which span various general natural language understanding (NLU) tasks from the GLUE and SuperGLUE benchmarks. Results indicate that, although GPT-4 consistently excels in most tasks, PaLM, when equipped with MP, approaches its performance level. Furthermore, across models and datasets, MP consistently outperforms existing prompting methods, including standard and chain-of-thought prompting. This study underscores the potential to amplify the understanding abilities of LLMs and highlights the benefits of mirroring human introspective reasoning in NLU tasks.
翻译:暂无翻译