Region extraction is necessary in a wide range of applications, from object detection in autonomous driving to analysis of subcellular morphology in cell biology. There exist two main approaches: convex hull extraction, for which exact and efficient algorithms exist and concave hulls, which are better at capturing real-world shapes but do not have a single solution. Especially in the context of a uniform grid, concave hull algorithms are largely approximate, sacrificing region integrity for spatial and temporal efficiency. In this study, we present a novel algorithm that can provide vertex-minimized concave hulls with maximal (i.e. pixel-perfect) resolution and is tunable for speed-efficiency tradeoffs. Our method provides advantages in multiple downstream applications including data compression, retrieval, visualization, and analysis. To demonstrate the practical utility of our approach, we focus on image compression. We demonstrate significant improvements through context-dependent compression on disparate regions within a single image (entropy encoding for noisy and predictive encoding for the structured regions). We show that these improvements range from biomedical images to natural images. Beyond image compression, our algorithm can be applied more broadly to aid in a wide range of practical applications for data retrieval, visualization, and analysis.
翻译:从自主驱动的物体探测到分析细胞生物学中的亚细胞形态学,在广泛的应用中,从自主驱动中的物体探测到分析细胞生物学中的亚细胞形态学,都有必要进行区域提取。主要有两种方法:Convex 船体提取,对此存在着精确有效的算法,而Concave 船体采集,这些算法更能捕捉现实世界形状,但却没有单一的解决办法。特别是在统一的网格中,concave 船体算法大致接近,牺牲了区域的完整性,从而牺牲了空间和时间效率。在这项研究中,我们提出了一个新的算法,可以提供顶峰(例如,像素-perfect)分辨率,并且可以缓冲速度效率交易。我们的方法在多个下游应用方面提供了优势,包括数据压缩、检索、可视化和分析。为了展示我们的方法的实际效用,我们侧重于图像压缩。我们通过在单一图像中根据环境对不同区域进行压缩(即为结构化区域进行噪音和预测编码的易懂编码),展示了重大改进,从生物医学图像到自然图像的广范围。除了图像压缩外,我们的视觉分析可以更广泛地应用。