Region extraction is necessary in a wide range of applications, from object detection in autonomous driving to analysis of subcellular morphology in cell biology. There exist two main approaches: convex hull extraction, for which exact and efficient algorithms exist and concave hulls, which are better at capturing real-world shapes but do not have a single solution. Especially in the context of a uniform grid, concave hull algorithms are largely approximate, sacrificing region integrity for spatial and temporal efficiency. In this study, we present a novel algorithm that can provide vertex-minimized concave hulls with maximal (i.e. pixel-perfect) resolution and is tunable for speed-efficiency tradeoffs. Our method provides advantages in multiple downstream applications including data compression, retrieval, visualization, and analysis. To demonstrate the practical utility of our approach, we focus on image compression. We demonstrate significant improvements through context-dependent compression on disparate regions within a single image (entropy encoding for noisy and predictive encoding for the structured regions). We show that these improvements range from biomedical images to natural images. Beyond image compression, our algorithm can be applied more broadly to aid in a wide range of practical applications for data retrieval, visualization, and analysis.


翻译:从自主驱动的物体探测到分析细胞生物学中的亚细胞形态学,在广泛的应用中,从自主驱动中的物体探测到分析细胞生物学中的亚细胞形态学,都有必要进行区域提取。主要有两种方法:Convex 船体提取,对此存在着精确有效的算法,而Concave 船体采集,这些算法更能捕捉现实世界形状,但却没有单一的解决办法。特别是在统一的网格中,concave 船体算法大致接近,牺牲了区域的完整性,从而牺牲了空间和时间效率。在这项研究中,我们提出了一个新的算法,可以提供顶峰(例如,像素-perfect)分辨率,并且可以缓冲速度效率交易。我们的方法在多个下游应用方面提供了优势,包括数据压缩、检索、可视化和分析。为了展示我们的方法的实际效用,我们侧重于图像压缩。我们通过在单一图像中根据环境对不同区域进行压缩(即为结构化区域进行噪音和预测编码的易懂编码),展示了重大改进,从生物医学图像到自然图像的广范围。除了图像压缩外,我们的视觉分析可以更广泛地应用。

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年8月10日
Arxiv
0+阅读 · 2022年8月9日
Arxiv
14+阅读 · 2019年9月11日
Arxiv
10+阅读 · 2017年7月4日
VIP会员
相关VIP内容
专知会员服务
51+阅读 · 2020年12月14日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员