The continuous expansion of the urban construction scale has recently contributed to the demand for the dynamics of traffic intersections that are managed, making adaptive modellings become a hot topic. Existing deep learning methods are powerful to fit complex heterogeneous graphs. However, they still have drawbacks, which can be roughly classified into two categories, 1) spatiotemporal async-modelling approaches separately consider temporal and spatial dependencies, resulting in weak generalization and large instability while aggregating; 2) spatiotemporal sync-modelling is hard to capture long-term temporal dependencies because of the local receptive field. In order to overcome above challenges, a \textbf{C}ombined \textbf{D}ynamic \textbf{V}irtual spatiotemporal \textbf{G}raph \textbf{M}apping \textbf{(CDVGM)} is proposed in this work. The contributions are the following: 1) a dynamic virtual graph Laplacian ($DVGL$) is designed, which considers both the spatial signal passing and the temporal features simultaneously; 2) the Long-term Temporal Strengthen model ($LT^2S$) for improving the stability of time series forecasting; Extensive experiments demonstrate that CDVGM has excellent performances of fast convergence speed and low resource consumption and achieves the current SOTA effect in terms of both accuracy and generalization. The code is available at \hyperlink{https://github.com/Dandelionym/CDVGM.}{https://github.com/Dandelionym/CDVGM.}
翻译:城市建设规模的不断扩展最近促使对所管理的交通交叉点的动态需求增加,使适应性建模成为热题。现有的深层次学习方法对于适应复杂的多式图形来说是强大的。然而,它们仍然有缺陷,可以大致分为两类:1) 空间时空合成模型方法可以分别考虑时间和空间依赖性,从而导致在汇总时空时空依赖性弱化和巨大的不稳定性;2) 空间时空同步建模很难捕捉长期的时际依赖性,因为本地的可接受字段。为了克服上述挑战,设计了一个CD Textbf{C} 封存的\ textbf{D} 。但是,它们仍然有缺陷,可以大致分为两类:1) CD textbf{V} 模拟方法,可以将空间信号的准确性D2+TF/Slimalmality 用于SOFSloralmality 和SLOFSLMSLMSL 的运行性能和SULTS-LTA的快速性测试。 2) 和SlentSlalalalalalalalalal-Silalalalalalalalalalal 和Silalalalalals 和Syalalalalalalalalalals 的运行的运行,可以同时展示Silv和SUDSUTF SilvSalb/SUDS2) 和SUDSalb/SLVSals 和SDSDSDSDSDSality的运行性能的运行性能的运行性能。