This paper studies Imitation Learning from Observations alone (ILFO) where the learner is presented with expert demonstrations that consist only of states visited by an expert (without access to actions taken by the expert). We present a provably efficient model-based framework MobILE to solve the ILFO problem. MobILE involves carefully trading off strategic exploration against imitation - this is achieved by integrating the idea of optimism in the face of uncertainty into the distribution matching imitation learning (IL) framework. We provide a unified analysis for MobILE, and demonstrate that MobILE enjoys strong performance guarantees for classes of MDP dynamics that satisfy certain well studied notions of structural complexity. We also show that the ILFO problem is strictly harder than the standard IL problem by presenting an exponential sample complexity separation between IL and ILFO. We complement these theoretical results with experimental simulations on benchmark OpenAI Gym tasks that indicate the efficacy of MobILE.


翻译:本文研究《光从观察中学习》(ILFO),向学习者展示了专家演示,仅由专家访问的国家(无法接触专家采取的行动)组成。我们提出了一个非常高效的模型框架MobILE,以解决ILFO问题。MobILE通过将面对不确定性的乐观观点纳入分布匹配学习框架(ILFO),谨慎地将战略探索与模仿进行交换。我们为MobILE提供了统一分析,并证明MbILE对满足某些经过良好研究的结构复杂性概念的MDP动态类别享有强大的性能保障。我们还表明,ILIFO问题比标准IL问题要困难得多,因为IL和ILFO之间的指数样本复杂性分离。我们用实验模拟OpenAI Gym基准任务来补充这些理论结果,表明MobILE的功效。

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Imitation by Predicting Observations
Arxiv
4+阅读 · 2021年7月8日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
7+阅读 · 2018年12月26日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Top
微信扫码咨询专知VIP会员