Weyl semimetals may open a new era in condensed matter physics because they provide the first example of Weyl fermions, realize a new topological classification even though the system is gapless, exhibit Fermi arc surface states and demonstrate the chiral anomaly and other exotic quantum phenomena. So far, the only known Weyl semimetals are the TaAs class of materials. Here, we propose the existence of a tunable Weyl metallic state in Mo$_x$W$_{1-x}$Te$_2$ via our first-principles calculations. We demonstrate that a 2% Mo doping is sufficient to stabilize the Weyl metal state not only at low temperatures but also at room temperatures. We show that, within a moderate doping regime, the momentum space distance between the Weyl nodes and hence the length of the Fermi arcs can be continuously tuned from zero to ~ 3% of the Brillouin zone size via changing Mo concentration, thus increasing the topological strength of the system. Our results provide an experimentally feasible route to realizing Weyl physics in the layered compound Mo$_x$W$_{1-x}$Te$_2$, where non-saturating magneto-resistance and pressure driven superconductivity have been observed.
翻译:精密物质物理学可能开启一个新纪元, 因为它们提供了首例微粒发酵, 实现一种新的地形分类, 尽管系统没有差距, 展示了Fermi Arc表面状态, 并展示了手性异常现象和其他异质量子现象。 到目前为止, 唯一已知的微量半金属是TaA类材料。 在这里, 我们提议通过我们的第一原则计算方法, 以Mo$xW$1-x} $Te_ 2美元的形式, 存在一个微量的微量金属状态。 我们证明, 2%的微量剂不仅足以在低温和室温条件下稳定微量金属状态, 我们还表明, 在中度的剂量制度下, 微量节点与因此的电弧长度之间的空间距离可以持续从零到~ 3 %的布里罗因区域大小, 通过改变微浓度, 从而增加系统的表质强度。 我们的结果提供了一种实验性可行的途径, 实现微量物理学不仅在低温度温度的情况下稳定了Wyl的金属状态。 我们表明, 在中, 在中度的化合物中度中, 以 磁度驱动度 度为 的磁度 度 度 度 度 度 度 度为 非磁度 。