Electric Vehicles (EVs) are spreading fast as they promise to provide better performances and comfort, but above all, to help facing climate change. Despite their success, their cost is still a challenge. One of the most expensive components of EVs is lithium-ion batteries, which became the standard for energy storage in a wide range of applications. Precisely estimating the Remaining Useful Life (RUL) of battery packs can open to their reuse and thus help to reduce the cost of EVs and improve sustainability. A correct RUL estimation can be used to quantify the residual market value of the battery pack. The customer can then decide to sell the battery when it still has a value, i.e., before it exceeds its end of life of the target application and can still be reused in a second domain without compromising safety and reliability. In this paper, we propose to use a Deep Learning approach based on LSTMs and Autoencoders to estimate the RUL of li-ion batteries. Compared to what has been proposed so far in the literature, we employ measures to ensure the applicability of the method also in the real deployed application. Such measures include (1) avoid using non-measurable variables as input, (2) employ appropriate datasets with wide variability and different conditions, (3) do not use cycles to define the RUL.


翻译:电动车辆(EV)迅速扩散,因为它们承诺提供更好的性能和舒适,但首先是帮助应对气候变化。尽管取得了成功,但成本仍然是个挑战。EV公司最昂贵的部件之一是锂离子电池,成为广泛应用的能源储存标准。精确地估计电池包的剩余使用寿命(RUL)可以对其再利用,从而帮助降低EV公司的成本并提高可持续性。正确的RUL估算可用于量化电池包的剩余市场价值。当电池仍然具有价值时,客户可以决定出售电池,也就是说,在电池超过目标应用寿命之前,可以出售电池,并且仍然可以在第二个领域重新使用,而不损害安全性和可靠性。在本文中,我们提议使用基于LSTMS和Autoencoders的深度学习方法来估计利离子电池的RUL。与文献中迄今提出的数字相比,我们采取措施,确保该方法在实际应用中也具有价值,即,即在电池应用期超过目标应用期之前,即,即在电池电池组超过目标应用期之前,也就是在超过目标应用期之前,仍然可以在不破坏安全和可靠性的情况下,在第二个领域重新使用。在本文件中,我们建议采用基于LSTMM和AUC的深度学习方法的方法,我们建议采用深入学习的方法。我们建议采用一种深度方法。我们建议使用一种方法。我们使用一种措施,以便使用不使用不使用不易变异性数据。我们使用不使用不使用不同的变性数据。

0
下载
关闭预览

相关内容

【如何做研究】How to research ,22页ppt
专知会员服务
108+阅读 · 2021年4月17日
【CMU】最新深度学习课程, Introduction to Deep Learning
专知会员服务
36+阅读 · 2020年9月12日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
【MIT深度学习课程】深度序列建模,Deep Sequence Modeling
专知会员服务
77+阅读 · 2020年2月3日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
LibRec 精选:位置感知的长序列会话推荐
LibRec智能推荐
3+阅读 · 2019年5月17日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Arxiv
0+阅读 · 2021年11月24日
Arxiv
5+阅读 · 2021年4月21日
Arxiv
27+阅读 · 2020年12月24日
Learning Implicit Fields for Generative Shape Modeling
Arxiv
10+阅读 · 2018年12月6日
Arxiv
5+阅读 · 2018年10月4日
VIP会员
相关资讯
LibRec 精选:位置感知的长序列会话推荐
LibRec智能推荐
3+阅读 · 2019年5月17日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Top
微信扫码咨询专知VIP会员