Recent advances in unsupervised representation learning have demonstrated the impact of pretraining on large amounts of read speech. We adapt these techniques for domain adaptation in low-resource -- both in terms of data and compute -- conversational and broadcast domains. Moving beyond CTC, we pretrain state-of-the-art Conformer models in an unsupervised manner. While the unsupervised approach outperforms traditional semi-supervised training, the techniques are complementary. Combining the techniques is a 5% absolute improvement in WER, averaged over all conditions, compared to semi-supervised training alone. Additional text data is incorporated through external language models. By using CTC-based decoding, we are better able to take advantage of the additional text data. When used as a transcription model, it allows the Conformer model to better incorporate the knowledge from the language model through semi-supervised training than shallow fusion. Final performance is an additional 2% better absolute when using CTC-based decoding for semi-supervised training compared to shallow fusion.


翻译:在未受监督的代表性学习方面最近取得的进展表明,培训前培训对大量读话的影响。我们将这些技术用于在低资源领域适应领域 -- -- 无论是在数据方面还是在计算 -- -- 对话领域和广播领域。我们超越了CTC,以不受监督的方式预演了最先进的联系模式。虽然未受监督的方法优于传统的半监督培训,但技术是互补的。这些技术是WER的5%绝对改进,在所有条件下均值,而半监督培训则单独。额外的文本数据通过外部语言模型纳入。通过使用基于CTC的解码,我们更有能力利用额外的文本数据。当作为抄录模式使用时,Conold模式能够通过半监督的培训更好地纳入语言模式的知识,而不是浅污染。在使用基于CT的解码进行半监督的培训时,最后的性能是更高2%的绝对性。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
深度卷积神经网络中的降采样
极市平台
12+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
1+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月15日
Arxiv
15+阅读 · 2018年2月4日
Arxiv
10+阅读 · 2017年7月4日
VIP会员
相关VIP内容
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
相关资讯
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
深度卷积神经网络中的降采样
极市平台
12+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员