With the increasing presence of robotic systems and human-robot environments in today's society, understanding the reasoning behind actions taken by a robot is becoming more important. To increase this understanding, users are provided with explanations as to why a specific action was taken. Among other effects, these explanations improve the trust of users in their robotic partners. One option for creating these explanations is an introspection-based approach which can be used in conjunction with reinforcement learning agents to provide probabilities of success. These can in turn be used to reason about the actions taken by the agent in a human-understandable fashion. In this work, this introspection-based approach is developed and evaluated further on the basis of an episodic and a non-episodic robotics simulation task. Furthermore, an additional normalization step to the Q-values is proposed, which enables the usage of the introspection-based approach on negative and comparatively small Q-values. Results obtained show the viability of introspection for episodic robotics tasks and, additionally, that the introspection-based approach can be used to generate explanations for the actions taken in a non-episodic robotics environment as well.
翻译:随着机器人系统和人类机器人环境在当今社会中的存在日益增加,理解机器人所采取行动背后的推理变得越来越重要。为了加深这种理解,向用户解释为什么采取了具体行动。除了其他效果外,这些解释提高了用户对其机器人伙伴的信任度。这些解释的备选办法之一是采用以内窥为基础的办法,这种办法可与强化学习剂结合使用,以提供成功概率。这些结果又可用来解释代理人以人类可理解的方式采取的行动。在这项工作中,这种以内探知为基础的办法是在一次偶发和非幻觉机器人模拟任务的基础上制定和进一步评估的。此外,还提出了Q值的又一个正常化步骤,使基于内探知的办法能够用于负面和相对较小的Q值上。获得的结果表明该代理人以人类可理解的方式采取行动的可行性。此外,在这项工作中,以内窥探为基础的办法可以在非幻觉机器人模拟任务的基础上进一步加以发展和评价。另外,还提议了Q值的又一个正常化步骤,以便能够在负面和相对小的Q值上使用内试探方法来提供成功的可能性。获得的结果表明,对可理解的机器人任务进行内探查的可行性,此外,在不以机器人为基础的办法可以用来在环境中作出良好的解释。