The problem of cooperation is of fundamental importance for human societies, with examples ranging from navigating road junctions to negotiating climate treaties. As the use of AI becomes more pervasive within society, the need for socially intelligent agents that are able to navigate these complex dilemmas is becoming increasingly evident. Direct punishment is an ubiquitous social mechanism that has been shown to benefit the emergence of cooperation within the natural world, however no prior work has investigated its impact on populations of learning agents. Moreover, although the use of all forms of punishment in the natural world is strongly coupled with partner selection and reputation, no existing work has provided a holistic analysis of their combination within multi-agent systems. In this paper, we present a comprehensive analysis of the behaviors and learning dynamics associated with direct punishment in multi-agent reinforcement learning systems and how this compares to third-party punishment, when both forms of punishment are combined with other social mechanisms such as partner selection and reputation. We provide an extensive and systematic evaluation of the impact of these key mechanisms on the emergence of cooperation. Finally, we discuss the implications of the use of these mechanisms in the design of cooperative AI systems.


翻译:合作问题是人类社会的根本问题,其实例从路口通路到气候条约谈判等,对人类社会具有根本重要性。随着AI的使用在社会上越来越普遍,对能够克服这些复杂困境的社会智能分子的需要越来越明显。直接惩罚是一个无处不在的社会机制,它证明有利于自然界内合作的出现,然而,以前的工作没有调查它对学习者人口的影响。此外,尽管在自然界使用各种形式的惩罚与伙伴的选择和声誉密切相关,但现有的工作没有提供对多试剂系统内这些惩罚组合的全面分析。在本文件中,我们全面分析与多试剂强化学习系统中的直接惩罚有关的行为和学习动态,以及当这两种惩罚形式与伙伴选择和声誉等其他社会机制相结合时,这与第三方惩罚如何相提并论。我们对这些关键机制对合作产生的影响进行了广泛和系统的评估。我们讨论了在设计合作性情报系统时使用这些机制的影响。我们讨论了在设计合作性情报系统时使用这些机制的情况。

0
下载
关闭预览

相关内容

【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
94+阅读 · 2019年12月23日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
21+阅读 · 2022年11月8日
Arxiv
66+阅读 · 2022年4月13日
Arxiv
15+阅读 · 2018年6月23日
VIP会员
相关资讯
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员