In clinical trials with recurrent events, such as repeated hospitalizations terminating with death, it is important to consider the patient events overall history for a thorough assessment of treatment effects. The occurrence of fewer events due to early deaths can lead to misinterpretation, emphasizing the importance of a while-alive strategy as suggested in Schmidli et al. (2023). We focus in this paper on the patient weighted while-alive estimand represented as the expected number of events divided by the time alive within a target window and develop efficient estimation for this estimand. We derive its efficient influence function and develop a one-step estimator, initially applied to the irreversible illness-death model. For the broader context of recurrent events, due to the increased complexity, the one-step estimator is practically intractable. We therefore suggest an alternative estimator that is also expected to have high efficiency focusing on the randomized treatment setting. We compare the efficiency of these two estimators in the illness-death setting. Additionally, we apply our proposed estimator to a real-world case study involving metastatic colorectal cancer patients, demonstrating the practical applicability and benefits of the while-alive approach.
翻译:暂无翻译