The joint estimation of the location vector and the shape matrix of a set of independent and identically Complex Elliptically Symmetric (CES) distributed observations is investigated from both the theoretical and computational viewpoints. This joint estimation problem is framed in the original context of semiparametric models allowing us to handle the (generally unknown) density generator as an \textit{infinite-dimensional} nuisance parameter. In the first part of the paper, a computationally efficient and memory saving implementation of the robust and semiparmaetric efficient $R$-estimator for shape matrices is derived. Building upon this result, in the second part, a joint estimator, relying on the Tyler's $M$-estimator of location and on the $R$-estimator of shape matrix, is proposed and its Mean Squared Error (MSE) performance compared with the Semiparametric Cram\'{e}r-Rao Bound (CSCRB).
翻译:从理论和计算角度对一组独立和同样复杂对称(CES)分布式观测的定位矢量和形状矩阵进行联合估计,从理论和计算角度对一组独立和相同复杂对称(CES)分布式观测的形状矩阵进行调查,这一联合估计问题在半参数模型的原始背景下提出,使我们能够将(一般未知的)密度生成器作为扰动参数处理。在文件第一部分,对形状矩阵的稳健和半par经济学高效的 $R$-估计仪的计算效率和记忆保存实施进行了计算效率和保存。在第二部分,根据这一结果,建议采用一个联合估计器,依靠泰勒的$M美元测位数和美元测算元的形状矩阵,并比照半参数CSCRRB(CRB),使用其平均偏差(MSE)的性能。