An iconoclastic philosopher and polymath, Charles Sanders Peirce (1837-1914) is among the greatest of American minds. In 1872, Peirce conducted a series of experiments to determine the distribution of response times to an auditory stimulus, which is widely regarded as one of the most significant statistical investigations in the history of nineteenth-century American mathematical research (Stigler, 1978). On the 150th anniversary of this historic experiment, we look back at Peirce's view on empirical modeling (especially his views on abductive inference) through a modern statistical lens. `AIM' of the present study and its utility for economists: Abductive inference plays a fundamental role in empirical scientific research as a tool for discovery and data analysis. Heckman and Singer (2017) strongly advocated `Economists should abduct.' Arnold Zellner (2007) stressed that `much greater emphasis on reductive [abductive] inference in teaching econometrics, statistics, and economics would be desirable.' But, currently, there are no established theory or practical tools that can allow an empirical analyst to abduct. My goal in this paper is to introduce some new principles and concrete procedures to the Economics and Statistics community. Using Peirce's data, it is shown how empirical analysts can abduct in a systematic and automated manner. I termed the proposed approach as Abductive Inference Machine (AIM).
翻译:1872年,皮尔斯进行了一系列实验,以确定对听力刺激的响应时间的分布,这被广泛视为十九世纪美国数学研究史上最重要的统计调查之一(Stigler,1978年)。在这一历史实验150周年之际,我们回顾皮尔斯关于通过现代统计透镜进行经验模型(特别是他对诱拐推断的看法)的观点。本研究报告的“AIM”及其对经济学家的效用:断层推断在作为发现和数据分析工具的实证科学研究中发挥了根本作用。赫克曼和辛格(2017年)强烈主张“天文学家应当绑架”19世纪美国数学研究史上最重要的统计调查(Stigler,1978年)。 Arnold Zellner(2007年)强调,“在教授生态计量、统计和经济方法时,我们更强调重新的[诱人]推论(特别是他对诱拐推论的看法)是可取的。但是,目前没有任何既定的理论或实用工具可以允许将实验性科学研究作为发现和数据分析工具。Apprmanmanmanman和Simicalimal Adalimational in the revidual dedualal degradualalalal degradual degradualalal dalalalal matigradudemodigraductions.