Due to the limitations of capture devices and scenarios, egocentric videos frequently have low visual quality, mainly caused by high compression and severe motion blur. With the increasing application of egocentric videos, there is an urgent need to enhance the quality of these videos through super-resolution. However, existing Video Super-Resolution (VSR) works, focusing on third-person view videos, are actually unsuitable for handling blurring artifacts caused by rapid ego-motion and object motion in egocentric videos. To this end, we propose EgoVSR, a VSR framework specifically designed for egocentric videos. We explicitly tackle motion blurs in egocentric videos using a Dual Branch Deblur Network (DB$^2$Net) in the VSR framework. Meanwhile, a blurring mask is introduced to guide the DB$^2$Net learning, and can be used to localize blurred areas in video frames. We also design a MaskNet to predict the mask, as well as a mask loss to optimize the mask estimation. Additionally, an online motion blur synthesis model for common VSR training data is proposed to simulate motion blurs as in egocentric videos. In order to validate the effectiveness of our proposed method, we introduce an EgoVSR dataset containing a large amount of fast-motion egocentric video sequences. Extensive experiments demonstrate that our EgoVSR model can efficiently super-resolve low-quality egocentric videos and outperform strong comparison baselines. Our code, pre-trained models and data can be found at https://github.com/chiyich/EGOVSR/.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
RECAP: Retrieval-Augmented Audio Captioning
Arxiv
0+阅读 · 2023年9月18日
Arxiv
0+阅读 · 2023年9月15日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员