This paper examines the problem of testing whether a discrete time-series vector contains a periodic signal or is merely noise. To do this we examine the stochastic behaviour of the maximum intensity of the observed time-series vector and formulate a simple hypothesis test that rejects the null hypothesis of exchangeability if the maximum intensity spike in the Fourier domain is "too big" relative to its null distribution. This comparison is undertaken by simulating the null distribution of the maximum intensity using random permutations of the time-series vector. We show that this test has a p-value that is uniformly distributed for an exchangeable time-series vector, and that the p-value increases when there is a periodic signal present in the observed vector. We compare our test to Fisher's spectrum test, which assumes normality of the underlying noise terms. We show that our test is more robust than this test, and accommodates noise vectors with fat tails.
翻译:本文审视了测试离散时间序列矢量是否包含定期信号或仅仅是噪音的问题。 为此, 我们检查了所观测的时间序列矢量最大强度的随机行为, 并制定了一个简单的假设测试, 以否定如果Fourier域的最大强度峰值相对于其无效分布“ 太大” 的无效互换性假设。 比较方法是使用时间序列矢量的随机变换模拟最大强度的无效分布。 我们显示, 此测试有一个 p 值, 平均分布于可交换的时间序列矢量, 当所观测的矢量有定期信号时, p 值会增加。 我们比较我们的测试与Fisher 的频谱测试, 该测试将假定基本噪音条件的正常性。 我们显示, 我们的测试比此测试更坚固, 并容纳有脂肪尾量的噪音矢量 。