The age dynamics of sexual partnership formation determine patterns of sexually transmitted disease transmission and have long been a focus of researchers studying human immunodeficiency virus. Data on self-reported sexual partner age distributions are available from a variety of sources. We sought to explore statistical models that accurately predict the distribution of sexual partner ages over age and sex. We identified which probability distributions and outcome specifications best captured variation in partner age and quantified the benefits of modelling these data using distributional regression. We found that distributional regression with a sinh-arcsinh distribution replicated observed partner age distributions most accurately across three geographically diverse data sets. This framework can be extended with well-known hierarchical modelling tools and can help improve estimates of sexual age-mixing dynamics.
翻译:性伴侣关系的年龄动态决定了性传染疾病传播的模式,长期以来一直是研究人体免疫机能丧失病毒的研究人员的一个重点。关于自我报告的性伴侣年龄分布的数据来自各种来源。我们试图探索准确预测性伴侣年龄超过年龄和性别的分布情况的统计模型。我们查明了哪些概率分布和结果规格最能捕捉到伴侣年龄的差异,并用分布式回归来量化这些数据模型的效益。我们发现,通过 sinh-arcsinh分布的分布性倒退最准确地复制了观察到的伴侣年龄分布在三个不同地域的数据集之间的最精确分布。这个框架可以使用众所周知的等级建模工具扩展,并有助于改善性年龄混合动态的估计数。