While the utility of well-chosen abstractions for understanding and predicting the behaviour of complex systems is well appreciated, precisely what an abstraction $\textit{is}$ has so far has largely eluded mathematical formalization. In this paper, we aim to set out a mathematical theory of abstraction. We provide a precise characterisation of what an abstraction is and, perhaps more importantly, suggest how abstractions can be learnt directly from data both for static datasets and for dynamical systems. We define an abstraction to be a small set of `summaries' of a system which can be used to answer a set of queries about the system or its behaviour. The difference between the ground truth behaviour of the system on the queries and the behaviour of the system predicted only by the abstraction provides a measure of the `leakiness' of the abstraction which can be used as a loss function to directly learn abstractions from data. Our approach can be considered a generalization of classical statistics where we are not interested in reconstructing `the data' in full, but are instead only concerned with answering a set of arbitrary queries about the data. While highly theoretical, our results have deep implications for statistical inference and machine learning and could be used to develop explicit methods for learning precise kinds of abstractions directly from data.
翻译:虽然人们非常赞赏为理解和预测复杂系统的行为而选取的抽象概念的有用性,但精确地说,到目前为止,抽象的美元(textit{is})在数学正规化方面基本上没有被接受。在本文中,我们的目标是提出抽象的数学理论;我们提供抽象概念的确切特征,也许更重要的是,我们建议如何直接从数据中为静态数据集和动态系统所选取的抽象概念。我们定义的抽象概念是一个系统的小“摘要”,它可用于回答关于系统或其行为的一系列询问。系统在查询方面的地面真相行为与系统行为之间的差异,只是通过抽象概念所预测的系统行为提供了一种衡量抽象概念的“明晰性”的尺度,可以用来作为直接从数据中学习抽象内容的一种损失函数。我们的方法可以被视为一种典型统计数据的概括性,我们不感兴趣“数据”的完整重建,而是只关注对数据及其行为的一系列武断查询的答案。虽然我们所使用的精确的统计结果的高度理论性,但从机器中可以直接学习。