Rapidly shrinking technology node and voltage scaling increase the susceptibility of Soft Errors in digital circuits. Soft Errors are radiation-induced effects while the radiation particles such as Alpha, Neutrons or Heavy Ions, interact with sensitive regions of microelectronic devices/circuits. The particle hit could be a glancing blow or a penetrating strike. A well apprehended and characterized way of analyzing soft error effects is the fault-injection campaign, but that typically acknowledged as time and resource-consuming simulation strategy. As an alternative to traditional fault injection-based methodologies and to explore the applicability of modern graph based neural network algorithms in the field of reliability modeling, this paper proposes a systematic framework that explores gate-level abstractions to extract and exploit relevant feature representations at low-dimensional vector space. The framework allows the extensive prediction analysis of SEU type soft error effects in a given circuit. A scalable and inductive type representation learning algorithm on graphs called GraphSAGE has been utilized for efficiently extracting structural features of the gate-level netlist, providing a valuable database to exercise a downstream machine learning or deep learning algorithm aiming at predicting fault propagation metrics. Functional Failure Rate (FFR): the predicted fault propagating metric of SEU type fault within the gate-level circuit abstraction of the 10-Gigabit Ethernet MAC (IEEE 802.3) standard circuit.
翻译:快速缩小的技术节点和电压缩放增加了数字电路软错误的易感性。软错误是辐射引起的效应,而阿尔法、中子或重离子等辐射粒子则与微电子装置/电路的敏感区域发生互动。粒子撞击可能是一次闪烁式打击或穿透式打击。分析软差错效应的一种非常周密和典型的方法是错射运动,但通常被确认为时间和资源消耗模拟策略。作为传统过错注射法的一种替代方法,并为了探索现代基于图形的神经网络算法在可靠性建模领域的适用性,本文提出了一个系统框架,探索门级抽取和利用低度矢量器空间的相关地貌表现。这个框架允许对特定电路段的SEU型软差效应进行广泛的预测分析。在被称为“图形SgromaSAGEA”的图表中,使用了可缩缩放和感动型代表法学习算法,以高效地提取门级网络列表的结构特征,提供一个宝贵的数据库,用于在低端机级机级学习或深层神经网络算,目的是预测S-IB型的Sliflibnial 方向测量标准测量标准。