Network-topology inference from (vertex) signal observations is a prominent problem across data-science and engineering disciplines. Most existing schemes assume that observations from all nodes are available, but in many practical environments, only a subset of nodes is accessible. A natural (and sometimes effective) approach is to disregard the role of unobserved nodes, but this ignores latent network effects, deteriorating the quality of the estimated graph. Differently, this paper investigates the problem of inferring the topology of a network from nodal observations while taking into account the presence of hidden (latent) variables. Our schemes assume the number of observed nodes is considerably larger than the number of hidden variables and build on recent graph signal processing models to relate the signals and the underlying graph. Specifically, we go beyond classical correlation and partial correlation approaches and assume that the signals are smooth and/or stationary in the sought graph. The assumptions are codified into different constrained optimization problems, with the presence of hidden variables being explicitly taken into account. Since the resulting problems are ill-conditioned and non-convex, the block matrix structure of the proposed formulations is leveraged and suitable convex-regularized relaxations are presented. Numerical experiments over synthetic and real-world datasets showcase the performance of the developed methods and compare them with existing alternatives.


翻译:从(顶端)信号观测得出的网络地形推断是数据科学和工程学科的一个突出问题。大多数现有计划假定所有节点的观测都是可以获得的,但在许多实际环境中,只有一组节点是可以获得的。自然(有时是有效的)方法是无视未观测节点的作用,但忽视了未观测节点的潜在网络效应,使估计图的质量下降。不同的是,本文件调查了从节点观测中推断网络的地形的问题,同时考虑到隐藏(相对)变量的存在。我们的计划假定,观察到的节点的数量远远大于隐藏变量的数量,并且以最近的图形信号处理模型为基础,将信号和基本图联系起来。具体地说,我们超越了传统的相关性和部分相关性方法,假设信号在所寻求的图表中是光滑的和/或静止的。这些假设被编纂成不同的限制优化问题,同时明确考虑到隐藏变量的存在。由于由此产生的问题不完善和非凝固变量的存在,因此,所观察到的节点数数量大大多于隐藏的变量的数量,并且建立在最新的图形信号处理模型处理模型的模型结构结构结构结构中,而现在的模拟和比较式的模型已经与合成系统化了。

0
下载
关闭预览

相关内容

【图与几何深度学习】Graph and geometric deep learning,49页ppt
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
深度卷积神经网络中的降采样
极市平台
12+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
7+阅读 · 2021年10月19日
Arxiv
4+阅读 · 2020年9月28日
Pointer Graph Networks
Arxiv
7+阅读 · 2020年6月11日
Arxiv
7+阅读 · 2019年5月31日
Arxiv
17+阅读 · 2019年3月28日
Learning to Importance Sample in Primary Sample Space
VIP会员
相关资讯
深度卷积神经网络中的降采样
极市平台
12+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Arxiv
7+阅读 · 2021年10月19日
Arxiv
4+阅读 · 2020年9月28日
Pointer Graph Networks
Arxiv
7+阅读 · 2020年6月11日
Arxiv
7+阅读 · 2019年5月31日
Arxiv
17+阅读 · 2019年3月28日
Learning to Importance Sample in Primary Sample Space
Top
微信扫码咨询专知VIP会员