We show that a pair of Kolmogorov-Loveland betting strategies cannot win on every non-Martin-L\"of random sequence if either of the two following conditions is true: (I) There is an unbounded computable function $g$ such that both betting strategies, when betting on an infinite binary sequence, almost surely, for almost all $\ell$, bet on at most $\ell-g(\ell)$ positions among the first $\ell$ positions of the sequence. (II) There is a sublinear function $g$ such that both betting strategies, when betting on an infinite binary sequence, almost surely, for almost all $\ell$, bet on at least $\ell-g(\ell)$ positions among the first $\ell$ positions of the sequence.
翻译:我们显示,如果下列两个条件中的任何一个是真实的,一对Kolmogorov-lovelland的赌注策略不可能在每一个非马提-L\"随机序列中获胜:(一) 一个没有约束的可计算函数g$g美元,因此,两种赌注策略,如果在一个无限的二进制序列上下注,几乎几乎全部美元,几乎可以肯定,在顺序中的第一个美元位置上下注$@ell-g(hell)$。 (二) 一个子线性函数是$g美元,因此,当赌注一个无限的二进制序列时,几乎可以肯定,几乎所有的美元都押在顺序中的第一个美元位置上下注$\ell-g(hell)$。