Modern geosteering is heavily dependent on real-time interpretation of deep electromagnetic (EM) measurements. We present a methodology to construct a deep neural network (DNN) model trained to reproduce a full set of extra-deep EM logs consisting of 22 measurements per logging position. The model is trained in a 1D layered environment consisting of up to seven layers with different resistivity values. A commercial simulator provided by a tool vendor is used to generate a training dataset. The dataset size is limited because the simulator provided by the vendor is optimized for sequential execution. Therefore, we design a training dataset that embraces the geological rules and geosteering specifics supported by the forward model. We use this dataset to produce an EM simulator based on a DNN without access to the proprietary information about the EM tool configuration or the original simulator source code. Despite employing a relatively small training set size, the resulting DNN forward model is quite accurate for the considered examples: a multi-layer synthetic case and a section of a published historical operation from the Goliat Field. The observed average evaluation time of 0.15 ms per logging position makes it also suitable for future use as part of evaluation-hungry statistical and/or Monte-Carlo inversion algorithms within geosteering workflows.
翻译:现代地质测量严重依赖对深电磁测量的实时判读。 我们提出了一个方法,用于构建一个深神经网络模型(DNN),该模型经过培训,可以复制全套的超深EM日志,每个记录位置有22个测量。该模型在1D层环境中受训,由最多7层的顶层和不同阻力值组成。一个工具供应商提供的商业模拟器被用于生成培训数据集。由于供应商提供的模拟器为连续执行提供了最佳的模拟器,因此数据集的大小有限。因此,我们设计了一个包含地质规则和远方模型所支持的地理定位特性的培训数据集。我们使用该数据集制作一个基于1DNN的EM模拟器,该模拟器没有获得有关EM工具配置或原始模拟器源代码的专利信息。尽管使用相对小的培训设置尺寸,但所产生的DNN的远方模型对于所考虑的例子来说是非常准确的:一个多层合成案例和Golit实地域所出版的历史操作的一部分。我们使用该数据集的模型,作为未来统计流程中平均的模型,并在Golit-hilling Stal-hilling Stalveloperal 中进行适当的统计流程。