Self-Supervised Learning (SSL) surmises that inputs and pairwise positive relationships are enough to learn meaningful representations. Although SSL has recently reached a milestone: outperforming supervised methods in many modalities... the theoretical foundations are limited, method-specific, and fail to provide principled design guidelines to practitioners. In this paper, we propose a unifying framework under the helm of spectral manifold learning to address those limitations. Through the course of this study, we will rigorously demonstrate that VICReg, SimCLR, BarlowTwins et al. correspond to eponymous spectral methods such as Laplacian Eigenmaps, Multidimensional Scaling et al. This unification will then allow us to obtain (i) the closed-form optimal representation for each method, (ii) the closed-form optimal network parameters in the linear regime for each method, (iii) the impact of the pairwise relations used during training on each of those quantities and on downstream task performances, and most importantly, (iv) the first theoretical bridge between contrastive and non-contrastive methods towards global and local spectral embedding methods respectively, hinting at the benefits and limitations of each. For example, (a) if the pairwise relation is aligned with the downstream task, any SSL method can be employed successfully and will recover the supervised method, but in the low data regime, SimCLR or VICReg with high invariance hyper-parameter should be preferred; (b) if the pairwise relation is misaligned with the downstream task, BarlowTwins or VICReg with small invariance hyper-parameter should be preferred.
翻译:自强学习(SSL) 推测, 投入和双向积极关系足以学习有意义的表达方式。 虽然 SSL最近达到了一个里程碑: 在许多模式中, 超过监督方法... 理论基础有限, 方法特定, 并且没有为实践者提供原则设计指南 。 在本文中, 我们提议了一个统一框架, 由光谱多元学习来引导, 以解决这些局限性 。 通过本研究过程, 我们将严格证明 VIRCReg、 SimCLR、 BarlowTwins et al. 与 Laplaceciian Eigenmaps、 Msuploblobal Astrual etal et al. 等相近频谱方法相匹配。 这一统一将使我们能够获得 (一) 每种方法的封闭式最佳代表方式, 方法都有限, (二) 每种方法的封闭式最佳网络参数, (三) 培训期间使用的配对关系对每个数量和下游任务性业绩的影响, 最重要的是, (四) 对比性与全球和本地和本地的相近光谱关系之间的第一个理论桥梁, 分别暗示和下游方法, 如果SLILFSLM方法可以成功。