Most practical scheduling applications involve some uncertainty about the arriving times and lengths of the jobs. Stochastic online scheduling is a well-established model capturing this. Here the arrivals occur online, while the processing times are random. For this model, Gupta, Moseley, Uetz, and Xie recently devised an efficient policy for non-preemptive scheduling on unrelated machines with the objective to minimize the expected total weighted completion time. We improve upon this policy by adroitly combining greedy job assignment with $\alpha_j$-point scheduling on each machine. In this way we obtain a $(3+\sqrt 5)(2+\Delta)$-competitive deterministic and an $(8+4\Delta)$-competitive randomized stochastic online scheduling policy, where $\Delta$ is an upper bound on the squared coefficients of variation of the processing times. We also give constant performance guarantees for these policies within the class of all fixed-assignment policies. The $\alpha_j$-point scheduling on a single machine can be enhanced when the upper bound $\Delta$ is known a priori or the processing times are known to be $\delta$-NBUE for some $\delta \ge 1$. This implies improved competitive ratios for unrelated machines but may also be of independent interest.
翻译:多数实际的日程安排应用程序都包含对工作到达时间和时间长度的不确定性。 在线日程安排是一个非常成熟的模型。 在这里, 抵达时间是在线的, 而处理时间是随机的。 对于这个模型, Gupta、 Moseley、 Uetz 和 Xie, 最近为非先发制人的日程安排安排无关的机器制定了有效的政策, 目的是最大限度地减少预期的总加权完成时间。 我们通过将贪婪的工作分配与每台机器上$\alpha_ j- point的日程安排相配合, 改进了这一政策。 这样, 我们就可以在每台机器上获得一个( 3 ⁇ qrt 5)( 2 ⁇ Delta) 美元的竞争确定性美元和 $( 8+4\ Delta) 的竞争性随机随机化在线日程安排政策, 其中, $\ Delta 美元是处理时间的正方位系数的上限。 我们还在固定岗位政策中不断保证这些政策的执行情况。 当上一个单一机器上的日程安排可以得到加强, 当上 $\ Delta $( $) 前已知的上限的上, 或不列的货币的货币的汇率将自动升级的上, 。