This study addresses the actual behavior of the credit-card fraud detection environment where financial transactions containing sensitive data must not be amassed in an enormous amount to conduct learning. We introduce a new adaptive learning approach that adjusts frequently and efficiently to new transaction chunks; each chunk is discarded after each incremental training step. Our approach combines transfer learning and incremental feature learning. The former improves the feature relevancy for subsequent chunks, and the latter, a new paradigm, increases accuracy during training by determining the optimal network architecture dynamically for each new chunk. The architectures of past incremental approaches are fixed; thus, the accuracy may not improve with new chunks. We show the effectiveness and superiority of our approach experimentally on an actual fraud dataset.
翻译:本研究涉及信用卡欺诈检测环境的实际行为,在这种环境中,含有敏感数据的金融交易不能大量积累,以便进行学习。我们采用了一种新的适应性学习方法,对新的交易块进行经常和有效的调整;每个块在每个渐进式培训步骤之后被丢弃。我们的方法是将转移学习和递增特征学习结合起来。前一种方法改进了以后块的特征相关性,而后一种模式是新的模式,通过动态地确定每个新块的最佳网络结构,提高培训的准确性。过去递增方法的结构已经固定;因此,与新块相比,准确性可能不会提高。我们用实际的欺诈数据集来实验显示我们的方法的有效性和优越性。