This study addresses the actual behavior of the credit-card fraud detection environment where financial transactions containing sensitive data must not be amassed in an enormous amount to conduct learning. We introduce a new adaptive learning approach that adjusts frequently and efficiently to new transaction chunks; each chunk is discarded after each incremental training step. Our approach combines transfer learning and incremental feature learning. The former improves the feature relevancy for subsequent chunks, and the latter, a new paradigm, increases accuracy during training by determining the optimal network architecture dynamically for each new chunk. The architectures of past incremental approaches are fixed; thus, the accuracy may not improve with new chunks. We show the effectiveness and superiority of our approach experimentally on an actual fraud dataset.


翻译:本研究涉及信用卡欺诈检测环境的实际行为,在这种环境中,含有敏感数据的金融交易不能大量积累,以便进行学习。我们采用了一种新的适应性学习方法,对新的交易块进行经常和有效的调整;每个块在每个渐进式培训步骤之后被丢弃。我们的方法是将转移学习和递增特征学习结合起来。前一种方法改进了以后块的特征相关性,而后一种模式是新的模式,通过动态地确定每个新块的最佳网络结构,提高培训的准确性。过去递增方法的结构已经固定;因此,与新块相比,准确性可能不会提高。我们用实际的欺诈数据集来实验显示我们的方法的有效性和优越性。

0
下载
关闭预览

相关内容

在机器学习中,表征学习或表示学习是允许系统从原始数据中自动发现特征检测或分类所需的表示的一组技术。这取代了手动特征工程,并允许机器学习特征并使用它们执行特定任务。在有监督的表征学习中,使用标记的输入数据来学习特征,包括监督神经网络,多层感知器和(监督)字典学习。在无监督表征学习中,特征是与未标记的输入数据一起学习的,包括字典学习,独立成分分析,自动编码器,矩阵分解和各种形式的聚类。
专知会员服务
39+阅读 · 2020年9月6日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
已删除
将门创投
5+阅读 · 2019年6月28日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
Learning to Weight for Text Classification
Arxiv
8+阅读 · 2019年3月28日
Arxiv
12+阅读 · 2019年3月14日
Arxiv
6+阅读 · 2018年12月10日
Arxiv
3+阅读 · 2016年2月24日
VIP会员
相关资讯
已删除
将门创投
5+阅读 · 2019年6月28日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
相关论文
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
Learning to Weight for Text Classification
Arxiv
8+阅读 · 2019年3月28日
Arxiv
12+阅读 · 2019年3月14日
Arxiv
6+阅读 · 2018年12月10日
Arxiv
3+阅读 · 2016年2月24日
Top
微信扫码咨询专知VIP会员