In the last few years, research and development on Deep Learning models and techniques for ultra-low-power devices in a word, TinyML has mainly focused on a train-then-deploy assumption, with static models that cannot be adapted to newly collected data without cloud-based data collection and fine-tuning. Latent Replay-based Continual Learning (CL) techniques[1] enable online, serverless adaptation in principle, but so farthey have still been too computation and memory-hungry for ultra-low-power TinyML devices, which are typically based on microcontrollers. In this work, we introduce a HW/SW platform for end-to-end CL based on a 10-core FP32-enabled parallel ultra-low-power (PULP) processor. We rethink the baseline Latent Replay CL algorithm, leveraging quantization of the frozen stage of the model and Latent Replays (LRs) to reduce their memory cost with minimal impact on accuracy. In particular, 8-bit compression of the LR memory proves to be almost lossless (-0.26% with 3000LR) compared to the full-precision baseline implementation, but requires 4x less memory, while 7-bit can also be used with an additional minimal accuracy degradation (up to 5%). We also introduce optimized primitives for forward and backward propagation on the PULP processor. Our results show that by combining these techniques, continual learning can be achieved in practice using less than 64MB of memory an amount compatible with embedding in TinyML devices. On an advanced 22nm prototype of our platform, called VEGA, the proposed solution performs onaverage 65x faster than a low-power STM32 L4 microcontroller, being 37x more energy efficient enough for a lifetime of 535h when learning a new mini-batch of data once every minute.


翻译:在过去几年里,关于超低功率装置的深学习模型和技术的研究与开发,TinyML(TinyML)以一个单词的形式,主要侧重于65个当值的电路配置假设,其静态模型无法在没有云基数据收集和微调的情况下适应新收集的数据。基于延迟重播的连续学习(CL)技术[1]使得原则上能够进行在线、服务器无服务器的适应,但迄今为止,这些模型和超低功率的TinyML(TinyML)设备通常以微控制器为基础,因此仍然太过量地计算和记忆-渴望超低功率装置的存储成本。在这项工作中,我们引入了一个基于10个调FP32的平行超低功率处理器(PUPLP)处理器。我们重新思考基底线的基底线重新定位(LWW/SW)平台对终端到CLOVM(ML)的直径直径可几乎不值(0.26 %),而我们用一个直径直径直径直径直径直径直径直径直径直径直径的服务器(SLLLLLLLLV-40),而用一个直径直径直径直路的存储路的操作操作操作的存储程序又要求我们使用一个最短的存储程序进行最短的存储,而需要一个最短的存储,而用最短直路路路路路路路路路路路路路路路路路路路路路路。

1
下载
关闭预览

相关内容

专知会员服务
31+阅读 · 2021年7月15日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
专知会员服务
60+阅读 · 2020年3月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
LibRec 精选:基于参数共享的CNN-RNN混合模型
LibRec智能推荐
6+阅读 · 2019年3月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
1+阅读 · 2021年12月16日
Arxiv
6+阅读 · 2021年6月24日
Continual Unsupervised Representation Learning
Arxiv
7+阅读 · 2019年10月31日
Arxiv
9+阅读 · 2019年4月19日
Arxiv
6+阅读 · 2018年12月10日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
LibRec 精选:基于参数共享的CNN-RNN混合模型
LibRec智能推荐
6+阅读 · 2019年3月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员