This work develops entropy-stable positivity-preserving DG methods as a computational scheme for Boltzmann-Poisson systems modeling the pdf of electronic transport along energy bands in semiconductor crystal lattices. We pose, using spherical or energy-angular variables as momentum coordinates, the corresponding Vlasov Boltzmann eq. with a linear collision operator with a singular measure modeling the scattering as functions of the energy band. We show stability results of semi-discrete DG schemes under an entropy norm for 1D-position 2D-momentum, and 2D-position 3D-momentum, using the dissipative properties of the collisional operator given its entropy inequality, which depends on the whole Hamiltonian rather than only the kinetic energy. For the 1D problem, knowledge of the analytic solution to Poisson and of the convergence to a constant current is crucial to obtain full stability. For the 2D problem, specular reflection BC are considered in addition to periodicity in the estimate for stability under an entropy norm. Regarding positivity preservation (1D position), we treat the collision operator as a source term and find convex combinations of the transport and collision terms which guarantee the positivity of the cell average of our numerical pdf at the next time step. The positivity of the numerical pdf in the whole domain is guaranteed by applying the natural limiters that preserve the cell average but modify the slope of the piecewise linear solutions in order to make the function non-negative. The use of a spherical coordinate system $\vec{p}(|\vec{p}|,\mu=cos\theta,\varphi)$ is slightly different to the choice in previous DG solvers for BP, since the proposed DG formulation gives simpler integrals involving just piecewise polynomial functions for both transport and collision terms, which is more adequate for Gaussian quadrature than previous approaches.
翻译:这项工作开发了 entropy- salective- palective 维护 DG 方法, 作为 Boltzmann-Poisson 系统在半导体晶晶体拉提基中模拟能源带电子运输的pdf 的计算方案。 我们使用球形或能源角变量作为动力坐标, 相应的 Vlasov 布尔茨mann eq. 使用线形碰撞操作器, 以单一测量模型为模型, 分散为能量带的功能。 我们展示了在 1D 定位 2D moment 和 2D 定位 3D-moment 系统中的半分解 DG 方法的稳定性结果。 使用碰撞操作器的分解特性, 使用前导器的分解方法, 使用前导值的平流函数, 使用后导值的分解法, 使用后导值的分解法的分解法, 使用前导体的分解法 。 对于2DO 问题, 考虑的分解法回映射 B, 在对恒定的周期中, 的周期中, 使用内序值的分解值值值值值值值值值的分解, 的分解, 使用下, 。