This paper tackles the problem of constructing a non-parametric predictor when the latent variables are given with incomplete information. The convenient predictor for this task is the random forest algorithm in conjunction to the so-called CART criterion. The proposed technique enables a partial imputation of the missing values in the data set in a way that suits both a consistent estimator of the regression function as well as a partial recovery of the missing values. A proof of the consistency of the random forest estimator is given in the case where each latent variable is missing completely at random (MCAR).


翻译:本文处理在潜在变量得到不完整信息时构建非参数预测器的问题。 此项任务的方便预测器是随机森林算法,与所谓的 CART 标准相结合。 拟议的技术可以对数据集中缺失的值进行部分估算, 既适合对回归函数的一致估计,也适合对缺失值的部分恢复。 当每个潜在变量完全随机缺失时, 提供了随机森林估计器一致性的证据( MCAR ) 。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
已删除
将门创投
5+阅读 · 2018年7月25日
算法|随机森林(Random Forest)
全球人工智能
3+阅读 · 2018年1月8日
Arxiv
0+阅读 · 2021年7月15日
Arxiv
0+阅读 · 2021年7月14日
Arxiv
0+阅读 · 2021年7月13日
Arxiv
0+阅读 · 2021年7月12日
Arxiv
0+阅读 · 2021年7月10日
Arxiv
5+阅读 · 2017年12月14日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2020年12月14日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
已删除
将门创投
5+阅读 · 2018年7月25日
算法|随机森林(Random Forest)
全球人工智能
3+阅读 · 2018年1月8日
Top
微信扫码咨询专知VIP会员