With the devastating outbreak of COVID-19, vaccines are one of the crucial lines of defense against mass infection in this global pandemic. Given the protection they provide, vaccines are becoming mandatory in certain social and professional settings. This paper presents a classification model for detecting COVID-19 vaccination related search queries, a machine learning model that is used to generate search insights for COVID-19 vaccinations. The proposed method combines and leverages advancements from modern state-of-the-art (SOTA) natural language understanding (NLU) techniques such as pretrained Transformers with traditional dense features. We propose a novel approach of considering dense features as memory tokens that the model can attend to. We show that this new modeling approach enables a significant improvement to the Vaccine Search Insights (VSI) task, improving a strong well-established gradient-boosting baseline by relative +15% improvement in F1 score and +14% in precision.
翻译:疫苗是防止这一全球大流行病大规模感染的重要防线之一。 疫苗由于提供了保护,因此在某些社会和专业环境中成为强制性疫苗。 本文展示了检测COVID-19疫苗相关搜索查询的分类模式,这是一种机器学习模式,用于为COVID-19疫苗提供搜索洞察力。 拟议的方法结合并利用现代最先进的自然语言理解技术的进步,如具有传统密集特征的预先培训变异器。 我们提出了一种新颖的方法,将密集特征视为该模型可以使用的记忆符号。 我们表明,这种新的模型方法能够大大改进疫苗搜索洞察(VSI)任务,通过相对15%的F1分和+14%的精确度提高一个牢固的加速梯度基线。