Deep Learning's outstanding track record across several domains has stemmed from the use of error backpropagation (BP). Several studies, however, have shown that it is impossible to execute BP in a real brain. Also, BP still serves as an important and unsolved bottleneck for memory usage and speed. We propose a simple, novel algorithm, the Front-Contribution algorithm, as a compact alternative to BP. The contributions of all weights with respect to the final layer weights are calculated before training commences and all the contributions are appended to weights of the final layer, i.e., the effective final layer weights are a non-linear function of themselves. Our algorithm then essentially collapses the network, precluding the necessity for weight updation of all weights not in the final layer. This reduction in parameters results in lower memory usage and higher training speed. We show that our algorithm produces the exact same output as BP, in contrast to several recently proposed algorithms approximating BP. Our preliminary experiments demonstrate the efficacy of the proposed algorithm. Our work provides a foundation to effectively utilize these presently under-explored "front contributions", and serves to inspire the next generation of training algorithms.
翻译:深度学习在多个领域的杰出成绩记录来自使用错误反向调整(BP) 。 然而,一些研究显示,在真正的大脑中执行 BP 是不可能的。 此外, BP 仍然是记忆用量和速度的一个重要和未解的瓶颈。 我们提出了一个简单、新奇的算法,即前线贡献算法,作为BP的契约替代。 在培训开始之前计算了所有对最后层重量的重量的贡献,所有贡献都附在最后层的重量上,即有效的最后层重量是其本身的非线性功能。 我们的算法随后基本上瓦解了网络,从而排除了非最后层所有重量的重量的权重提升必要性。 参数的减少导致记忆用量减少,培训速度提高。 我们的算法产生与最近提出的几项接近的BP 。 我们的初步实验展示了拟议算法的功效。 我们的下一个工作为有效利用目前地下的“ 前层贡献” 提供了基础。