This work presents proximally optimal predictive control algorithm, which is essentially a model-based lateral controller for steered autonomous vehicles that selects an optimal steering command within the neighborhood of previous steering angle based on the predicted vehicle location. The proposed algorithm was formulated with an aim of overcoming the limitations associated with the existing control laws for autonomous steering - namely PID, Pure-Pursuit and Stanley controllers. Particularly, our approach was aimed at bridging the gap between tracking efficiency and computational cost, thereby ensuring effective path tracking in real-time. The effectiveness of our approach was investigated through a series of dynamic simulation experiments pertaining to autonomous path tracking, employing an adaptive control law for longitudinal motion control of the vehicle. We measured the latency of the proposed algorithm in order to comment on its real-time factor and validated our approach by comparing it against the established control laws in terms of both crosstrack and heading errors recorded throughout the respective path tracking simulations.


翻译:这项工作提出了近似最佳的预测控制算法,基本上是一个基于模型的自主驾驶车辆横向控制器,该算法根据预测车辆位置,在先前方向方向附近选择了最佳方向指挥;拟议的算法旨在克服与自主驾驶现有控制法(即PID、Pure-Pursuit和Stanley控制器)有关的限制;特别是,我们的方法旨在弥合跟踪效率和计算成本之间的差距,从而确保实时有效跟踪路径;我们的方法的有效性通过一系列动态模拟实验进行了调查,这些实验涉及自主跟踪路径,采用适应性控制法对车辆进行长视运动控制;我们测量了拟议算法的长度,以便对其实时因素作出评论,并通过比较在交叉轨道和跟踪模拟过程中记录的所有错误方面的既定控制法,验证了我们的方法。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
【Manning新书】现代Java实战,592页pdf
专知会员服务
99+阅读 · 2020年5月22日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
已删除
将门创投
3+阅读 · 2017年10月12日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
已删除
将门创投
3+阅读 · 2017年10月12日
Top
微信扫码咨询专知VIP会员