The reconfiguration graph $\mathcal{C}_k(G)$ for the $k$-colourings of a graph $G$ has a vertex for each proper $k$-colouring of $G$, and two vertices of $\mathcal{C}_k(G)$ are adjacent precisely when those $k$-colourings differ on a single vertex of $G$. Much work has focused on bounding the maximum value of ${\rm{diam}}~\mathcal{C}_k(G)$ over all $n$-vertex graphs $G$. We consider the analogous problems for list colourings and for correspondence colourings. We conjecture that if $L$ is a list-assignment for a graph $G$ with $|L(v)|\ge d(v)+2$ for all $v\in V(G)$, then ${\rm{diam}}~\mathcal{C}_L(G)\le n(G)+\mu(G)$. We also conjecture that if $(L,H)$ is a correspondence cover for a graph $G$ with $|L(v)|\ge d(v)+2$ for all $v\in V(G)$, then ${\rm{diam}}~\mathcal{C}_{(L,H)}(G)\le n(G)+\tau(G)$. (Here $\mu(G)$ and $\tau(G)$ denote the matching number and vertex cover number of $G$.) For every graph $G$, we give constructions showing that both conjectures are best possible. Our first main result proves the upper bounds (for the list and correspondence versions, respectively) ${\rm{diam}}~\mathcal{C}_L(G)\le n(G)+2\mu(G)$ and ${\rm{diam}}~\mathcal{C}_{(L,H)}(G)\le n(G)+2\tau(G)$. Our second main result proves that both conjectured bounds hold, whenever all $v$ satisfy $|L(v)|\ge 2d(v)+1$. We conclude by proving one or both conjectures for various classes of graphs such as complete bipartite graphs, subcubic graphs, cactuses, and graphs with bounded maximum average degree.


翻译:暂无翻译

0
下载
关闭预览

相关内容

【ACL2020】多模态信息抽取,365页ppt
专知会员服务
142+阅读 · 2020年7月6日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
28+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
149+阅读 · 2019年10月12日
【NeurIPS2019】图变换网络:Graph Transformer Network
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
72+阅读 · 2016年11月26日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2023年11月15日
Arxiv
0+阅读 · 2023年11月14日
Arxiv
0+阅读 · 2023年11月14日
Arxiv
0+阅读 · 2023年11月12日
Arxiv
0+阅读 · 2023年11月11日
Arxiv
0+阅读 · 2023年11月10日
Arxiv
0+阅读 · 2023年11月10日
VIP会员
相关资讯
【NeurIPS2019】图变换网络:Graph Transformer Network
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
72+阅读 · 2016年11月26日
相关论文
Arxiv
0+阅读 · 2023年11月15日
Arxiv
0+阅读 · 2023年11月14日
Arxiv
0+阅读 · 2023年11月14日
Arxiv
0+阅读 · 2023年11月12日
Arxiv
0+阅读 · 2023年11月11日
Arxiv
0+阅读 · 2023年11月10日
Arxiv
0+阅读 · 2023年11月10日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员